Concordia Seminary - Saint Louis
Scholarly Resources from Concordia Seminary

4-15-1941

Genesis, Genetics, and Evolution

John William Klotz
Concordia Seminary, St. Louis, ir_Klotzj@csl.edu

Follow this and additional works at: https://scholar.csl.edu/bdiv
Part of the Religious Thought, Theology and Philosophy of Religion Commons

Recommended Citation

Klotz, John William, "Genesis, Genetics, and Evolution" (1941). Bachelor of Divinity. 44.
https://scholar.csl.edu/bdiv/44

This Thesis is brought to you for free and open access by the Concordia Seminary Scholarship at Scholarly Resources from Concordia Seminary. It has been accepted for inclusion in Bachelor of Divinity by an authorized administrator of Scholarly Resources from Concordia Seminary. For more information, please contact seitzw@csl.edu.

GENESIS, GENETICS, AND EVOLUTION

A Thesis presented to the
Faculty of Conoordia Theological Seminary
in partial fulfillment of the requirements for the degree of

Bachelor of Divinity
by
John William Klotz, A. B., M. S.

Concordia Seminary April 15, 1941

Tabla OF oqvebias

List of Figures ii
List of Tableg. iii
Foremord iv
Prefaoo. V
Genesis, Gonetios, and Evolution. 1
Bibliography 100
Index. 103
List oi iligures
page
Figure I: dilugtrating the onromosome acooreing to the llorgan Brides behe 6 15
Pigure II: tha Probable Chaioal Structure of Hucjato haja. 19
Aigure III: How hondel's Laws wask. 22
Bigure IV; rulastrating a oross betweon two Creepar Powle 27
Figure V: The huller Clis mothod for deteoting lethals.. 28
Pigare II: Expeoted resul ts fron a cross between a he terozyg us black-bodied, vestigial wing fly and a grey bodied, long wingod fily 32
Figure VII: Inheritanos of linked charaoters. 33
Pigure VIII: Diagramatio 13lustration of the aytologio. 1 evidenos zor arossing over... 34
Nigure IL: Comparison of the vertebrate and invertobrate body plan. 82

Mable I: hean2te of rulkar's work with Drosophila asing tho 02B nothod.29

Tabla I7: Nomults 0: oxomaus with voinieoc in fabrobrnaci juglancis. .30

Fable IIS: Results of axossen with rellow in Hrbeobraooa juglandia. .33
fabla IV: Survival of antations. .66

MORBWORD

The author wishes to thank Mr. W. Bernard Sonuzat who propered the illastretions for this thesig. To Dr . Theo. Graobner the author le gratofill for his aontinuee onoouragenent and for his advios and assistance in morising out this thosis. aoknowledgoment ie also made to the University of Littsburgh, Waghington University, and Conoordia Seminary for the uee of library facilities.

This paper is oonoexned with tho ovolutionary theory. it atterspts to btudy the theory both in tho light of the Vord of God and of tho latest solentifio ovicence, partiouleriy that in the atum of genotion.

If sa not the objeot of the paper to disprove the ovointionary hypotheoie. The problen in itbole is too big. or. Goldechaidt bays in his nogt racont book: "No indavidasi oan chain auoh a maetery of all feats pertaineng to avolation to enable hia to present buoh a aisoussion (a diacnasion of the faote, theories, and laws of ovolution)". 2j No one man in his 2120 tian oun possimy besonc noquaintod with all the phasos of biologioni and allied branohos of butence which bear on 1t. He oan understana and avaluate the argument: for evolution only in his partioniar fiola. In other If.elds he matat take the mora of those who have made a spocial atudy of that Pield. Bat ho agnot beoom aqquaintod first hand with the ovicence in all liolds.

It is jugt hora that the aipeianity ariaes. Living organisms axa not divided into speaial departmonts. Hysiology ammot be etudiod apart iron genetios; anatoay annot bo at diod apart from eabryology; tazonomy gannot be atudied apart fron aczphology. Unfortmatoly this in attempted all too ofton, and the regult is a large nuaber of ansoLentifio gintemants.

1) Coldgomadt. Riohard The Matorial Basia of Erolution, p. 3

Most of this paper will be concerned with genetios. That is my partioular field. I believe that it is the most important fielá so far as evolution is concerned beoause it is through inheritance and through variation in the usual manmer of inheritance that evolation mast take plae.

It will be argued that I approach the whole subject with a theological bias. I do not deny that. I oannot avoid doing thet beoause I bolieve that where God has apoken we huve the truth. I believe that He has spoken so far as evolution is oonoerned and that for thet reason the hatter is olosod. But I also find rach sapport for my rezusal to believe the evolutionary explanation ot the oxigin of the present biologioal world in biology itself. These evidenoes I shall disouss in ray paper.

In approaching the problem of evolution as Christians, our first question must be: "What doss Soripture say on the subjeot?". We do not have to look fer for the answer, for in the very first ohapter of Genesis, where the account of the oreation of the world and man is given us, we find ten statements that the various plants and animals were oreated "after their kindif. This same expression oocurs elsewhere in Soripture tirenty-one times.

Now what does this phrase: "aiter their kind" mean? Theistio evolutionists who are interested in keeping god in their theory insist that this word $\frac{7}{\prime}$ does not mean speoies, but that it has a wider meaning in Soripture. That we must admit. In Buhl's edition of the oelebrated Gesenius Handwoerterbuoh its nieaning is eiven as "Art, Stlok, Variation, Artverschiedenheit, und dann ooli. die einzelnen Vartataten einer Gattung".

There is muoh oontroversy oyer the etymology of the word. Some believe it to be derived from the root. 7 \& whioh does not oocur in the 01d Testament Suriptures. In Arabio one of the corresponding roots means "to tell lies". In Ethiopian the word meins to "be wily", "be ounning". In Hebrew the term probably meant "to wear an appearande", "pretend". Hence the noun derived from this verb acquired the meaning "kind", "speciss". It is
i) Gesenius, W. Handwoerterbuah luber das Alte esta ent, ed. Buhl, Leipzig, 1910, p. 415
interesting to note that there is a siailar relation in Engish betwoen the noun "speoies" and the adjeotive "speaious" in English.

A better derivation would tuke the word from \qquad . This derivation is proiorrad by Buhl. Th. Noeldake in the zoitBohriPt der Doutsohen Morgenlaendisohon Gesellsohait (37. 532) and Dillmann dorive it rom the Arabia word for fear, out, divide. This root does not ooour in 01d Testament Hebrew, but does ocour in New Hebrew. In Yiddish it is used to refer to the different seots such as the Jovish-Christians. A similar ohristo-palestinian root means "nation".

This derivation is upheld by de Lagarde in his Uebersiont ueber die im Aramaio nebliohe Bildung der Momina (1889, 183f); by Sohwally (Idiotion dos ohristlio palaestinisohen Aramaio, 1893. 50); by Sohulthess (Eexioon Syropalaestinum, 1903); by Littraann (Zeitsohrift fuer Assyrologie, 12, 200; 14,89); by Koenig (iliatorioh-kritisohes Lohrgebaeude der Kobraisohen Sprache, 2. 591); by Fr. Delitzsoh (grolegomena oines neuen hobraisohen aramaisohen Woerterbugh zum Alton Testament); by Haupt (Journal) Of the Aaerioan Orientil Sooiety, 25, 71).

Closely rel ted to this word is the word
 whioh neans "appearanoe", "likeness". It is oftin used for the I1keness to God, Num, 12, 8 and Ps. 17, 15.

The various translations do not give us much help in deteraining the ewaot meaning of the vord. In general the Septuagint translates the word y° g with the word fesues. But the 1) Buhl, 100. oit.
 Testanont fhyOS in tranelata variousiy as "ejveraity" (I core 12. 28): "gencration" (I pot. 2. 9): "leind" (Matt. 25.47); "上in-

 "gtoak" (ata 13.26): and "bors at" or "bovn in" (A0ta 18, 2. 29).

Eimilariy tho Vusgate does not shed wah light on the exsot moaning of tho texm 7 P. Jarome tranglatos it both as genug and as goegieg. The two terab are ued by him intorohangoibly, for in so. le le he trangl.te日 7 ? onoe as genus and tho seoond thac as gpeasag.

What than doen the word aean? Pirst os all. it doas not mean "spoaias" in the prosent ragtriated taxononio sanse of tha mora. That aonoopt did not exist at the time of the Hebrevs. But the term "apooias" epproachea very olose to LtB meaning. The tera "kind" as We iind it in our Bnglish Bible is azso very gooi. A brief goiontisIo dolimition woula be this: Than Moses gaid that the plants end anirasa vere to re zoduoe aiter bheir kind, ho mant that oifapring Ware to hava casometin aatarsal the same or very similar to that of thait paronta.

Comantatoss and otners who disoues this tora are not antirely in agrearaont, but by and large they agree vith tha poastion ofted above. We shall look into the gtatemonte of the a nubber of thea. These ara quoted not as authorities on the subjeot, but giapiy to shov the diefaren viowpolits whioh they hold.

Oux Jathoran dogaatlal ans have vary littie to gay on tha subjoct bew
oause the subjeot was not in controversy at the time when they wrote. Yet there are numerous indioations in their writings that they took a oreation according to speoies for granted. Speaking of the oreation of possonous orestures, Calov says: "Omnes sane spooies herbarum et arborum initio conditae, sed quia omnia valde bona oreata venenum et malitia non prima oreatione sed a peooato merito deducitur" ${ }^{1)}$ Osiander in Thesis XIX of his Collegium Theologioum writes:"Forma oreationis est productio specierum ad voluntatem oreantis perieote oongruentium". In Thesis XXXIII he writes: "Plantae ipso aotu (the oreative act of the third day), hoo die, seoundum exteriorem formam sunt productae". 2)

Finally we quote from Baier who writes:"Ut autem perennare posset mundus produxit Deus eorpora simplioia quidem es conditione ut nunquam penitus corrumpantur, mixtis vero, quee vitam corruptioi obnoxiam habent vim generandi aut multiplioandi se communioavit ad oonservationem speaiel unde ot ouiusque speoiei animantis duo utriusque sexus individua simul produxit". ${ }^{3}$)

The oomaentators are almost unanimous in telling us that this term 7 '\& must refer to species as we know them today. Luther lived long beiore the days of Darwin and the evolutionary controversy. He knew nothing at all of modern taxonomy with its olassification into genera and species. For that reason he oan soarcely be aooused of reading something into the

1) Calov, Abraham Biblia Testamenti Vateris et Novi Illustrata
p. 228
2) Osiander, John Collegium Theologioam, p. 55 fif
3) Baier, J. Compendium Theologiae, vol.II, p. 22
text, of approaching it with a theologioal bias. Yet Juther very olearly identifies the term]'乌 with the term "speoies" as we understand it today. He says: "The fact that every plant arises from a plant like it acoording to regular laws is a clear sign that oreation did not take place by ohance, but acoording to the plan and foresight of God. From wheat there arises nothing but wheat: from barley nothing but barley: from rye nothing but rye: and so forth. Each speaies retains for all time its fixed order, way, and peouliarities." 1)

Another commentator, Sohmidt, who lived long before the outbreak of the Darwinien oontroversy oomes to the same conclusion. Friting in 1697 he says in commenting on Gen. 1,11: "Hoo est, Et lignum fructum faoiens; faciens autem, non omne fructum unius speoiei tanturn, sed quodque juxta propriam speciem suam". 2)
liost modern oommentators are agreed that the term as it is used in Genesis refers to the oreation of species as we know them today. That is true not orily of Fundamentalists, but also of some of the more Modernistic oomentaries. For even though the Modernists may deny the authority and inspiration of Genesis, they will not, if they are Semitic soholars of any standing, deny its plain statements.

The Pulpit Comentary, a conservative ammentary on the whele Bible, says on Gen. 1,11: "The phrase 'aiter his kind' appended to the second and third (herb and fruit tree) seems to indiate

[^0]that the different species of plants were already fixed. The modern dogma of the origin of speoies by development would thus be deolared to be unbiblioal as it has not yet been proved to be soientific. The utmost that oan be olaimed as established is that 'speoies' qua species have the power of variation along the line of oertain oharaoteristios belonging to themselves, but not that any absolutely new species has ever been developed with power indefinitely to multiply its kind". On verse 21 of the ohapter the author says: "The generia terms are thus seen to inolude many distinct orders and species oreated each after its kind". 1)

An Amerioan Commentary on the 01d Testament, a Baptist commentary, says on Gon. 1, 11: "After its kind: that is, after its speoies. This phrase conveys the important truth that these speoies do not run into each other. Apart from the divine word, there was nothing in matter itself nor in any of its possible combinations or adjustments that could produce life either vegetable or animal........We have here an instance of the natural originating in the supernatural and then following established law in its established order.
"In this assertion of the distinctiveness of speoies and. the production of each as a distinat part of the oreative plan, revelation tallies perfeotly with the oonolusions of natural soience whioh leads us to believe that each speoies as observed

1) Spense, Canon, ed. The Pulpit Commentary, Penesis, p. 18
by us is pormanentiy roproduotive, variable within narrow limits, and inoapable of permanent intermixture with other spea1es; and though hypotheses of modifiostion by desoenti and of the production of new speaies by suoh modifioation may be formed, they are not in acoordanoe with experienoe and are still among the unproved speoulations whioh haunt the outskirts of true soienae (Damson)". 1)

Adan Clarke, in his commentary on Genesis, says on Gen. 1 , 11: "Iverything both in the animal and vegetable vorld was made so acoording to its kind both in genus and sposies as to produae its own kind through endiess genorations. Thus the several races of animals and plants have been kept distinot from the foundation of the world to the present day. This is a proof that all puture generations of plants and animale have been seminally inaluded in those whioh God pormed in the beginning". 2)

Jainieson, Fausset, and Brown, in their Critiasi Commentary, any on the same verse: "After his kind (_j>36)-after its speaios. It was applied to the herb notioed previously as it is anentioned aftervards in connection with the lower animals as vell as man; and it is partioularly worthy of notioe that this aark of distinction is made and repeated in all the suocessive parts oi the narrative relating to the orestion af organio life, thereby olearly announoing it to be a universal

[^1]law, established both in the vegetable and animal world that distinctions of speoies entered into the original plan of the Creator". 1)

Driver, the weil-knom oritio, is foroed by his soholarship to say: "after its kind: rather after its kinds (the mord being colloctive) i.s. acoording to its varions spocies: so vv. 12,24,25. The addition oalls attention to the number and variety of the aifferent spooles included under each head".

Delitzsoh, the well-known Hebrew soholar, says: "...but aertainly a referenco to the fruit troo is intended, the fruit of the fruit tree is deterained aocording to spooies". 3)

Gunkel, another well-known oxitic, says on this verse: "Der Verfasser will deutlioh maohen, dass gott es ist. der die Kassen lestgesetzt and so die ordnung der Welt selber bestimmt hat: Die Klassen sind ewig". 4)

Otto Prooksoh, in his ommentary on Genesis, writes on this Bame verse. Gen. 1,11: "Die beifen genera der flora entlalten sioh in don spooies. Die oinzelnen speoies sind also von Anfang an vorhanden". 5)

Peake, too, in his oommentary on Genesis, agrees vith the

[^2]authorities whom we have quoted before. He says: "Saoh genus romains fixed and reproduces 'aftor its kinds', i.e. tho varlous speoies oubraced in it". ${ }^{1)}$

Oi course not all onmentators agres that there is a reference to the oreation nocording to species hore. Some have thair own poonliar exegesis of this verso. Among these is Hatthow henyy who lived and wrote beiore the days of Darwin and the evolutionary controversy. He believes that these words are a general reference to the fact that God oreated all kinds of plants and animals and not a necessary referenoe to the fact that plonts and animals were oreated acooxding to spooies.

We would expeot that some aritios would be so blased in their approach to soripture and so "modern" in their thinking that they would rofuse to admit these words to be a reference to spocies. We are not surptised then when skinner, the wellknown oritic, who edited the first voluas of the international Critiaal oomentary, writes: "The etymology (of $7>$ 号) is un-
 meaning would be form (Lat. spooise); but in asage it seans to mean eimply 'kind', the singalar suilix here being distributive 'acoording to its several kinds'. In Syriac the oorresponding word denotes samily or tribe".

Koil, the well-known Hebrew soholar, has a similar inter-

[^3] die Krdutor and Blame nah ihron mannigfaltigon arton aus dor Erie aufgingen and mit der Krait, Bumen and Truant au bringer, zugleioh dis Jhaigkeit, sion in ihron Arten iortzupilanzon and zoa varmehren, empingen". While Kail lays the chief stress on the creation of a large number of different kinds of plants and animals, ho does add that they reproduce according to their kind. I)

Finally we shall quote iron one more oritio, the Rev. F. Ramsey who says: "kinds of - the meaning is not according to type (as the hoV. 'aftar....kind' suggests) but in variety. Verse 11 says that God made ail varieties or kinds of herbs and trees: V. 21 that He node all sorts of water animals and air animals: and v. 85 that lie made all kinds of land animals". 2)

While we must admit then that we cannot say definitely that the word as it 28 used in Genesis means "species". We are sale in saying that most commentators have understood it in this way. This moreover world seen to be the natural way of understanding these statements when wo approach them with an unprejudiced mind. The very fact that the word is repeated again and again would indioate that it has some real significanoe. It would almost seem as if the inspired writer had antiaipated the controversies which would arise and in order to emphasize the fact that God did create the plants and animals according to their species, he repeats this term over and over

1) Neil, Carl Biblisoher Cormentar hUber die Blower Hoses, vol.I p. 17
2) Ramsay. 2. An Intarpratation oi Genesis. p. 17
again. It is interesting to note that this phrase "after his kind" is not nsed in the asce of the oreation of man thereby indiaating the gulp that exists between raan and the higheat animals.

Aotually the oonoept "species" did not exist at the time the book of Genesis was wxitten. That ooncept has arisen only With modern taxonomy since the days of Linnaeus. The people of hoses' tine did not olassify plants and aniaals into genora and species as we do today. Thore was no term for "speofes": Hoses could not have writton that God oreated plants and aninuls aocording to their speoies unless he had used a texin utteriy foreign to the poople to the people of his time and to the peoples of the 33 centuries foliowing hin.

Finally wo naagt remark that the tora"speoiss" is an arbitrary designation. As we shail have occasion to state in ano ther comestion, nature itself is not olassified: it ia man who classifies nature. The term "spocies" is a taronomio term, and like other terms, it desoribes natura as man sees it. not as it atually is.

Aotually no oompetent biologist today even attempts to definonspocies. Dobzhansky says in his latest book: ${ }^{n}$ of late the iutillty of attorapta to pind a universally velid oriterIon for distinguishing species has oome to be fairly generally if roluetantig reoognized. This difiliance has prompted an affable systematiat to propese sonsthing like the fol-

Iowing desinition of a species: 'a species is whet a competent syatenatiat onsiders to be a speases". 1)

It right be woll to add a word hare with regard to our own poaition over against derining a species. and that is this. If oompetent systematists oannot agreo on a deifnition of a gpecies, cortainly wo ought not try to propoanc a definition. For in we acoept the nost widely aocepted definition of a species, via., a group of animale or plants aapable of fertile interbreeding indefinitely. I think we will have to admit that new speoies in this serso of the word have appoared.
I co not believe that the acoount in Coneste requires us to aocept this destintion of a apecies. Horeover I do not belleve that ali fome whioh are today olassified as distingt speoios have existed as suoh sinco the creation. For instance, there are sevaral speoies of Drosophila whioh havo evidontiy originated iroa a comion anceator. Shey exinibit parellel natetione: that is, the difierent apeaies show the same aut tiong. Horgover in those forms whioh can be orosead, a sthoy of their chromobomes in synapsie shows that for the rost part the ohromosomes are alike. Here and there In seotions of the individual ohroanomes fransloastions and invergions havo evioutily occurred. Wis would inciaate. at least to sy mint, that these speoiss have oone from a common ancestor.

I 0 o not however believe that all forms today have originatad from a siagio conaon anosstor or that they have originated Ifom a relativaly ifw consion anoestorg. That, I believe,

[^4]would be oontrary to the qocount of Genesis and also contrary to the faots of soionce. The soientilio exidenoe on the natter I shall present in theso nozt pages.

Genetios is oonoerned with the study of inharitanoe, the study of the way in whioh the various oharaoters in plants and animais are handed down from parent to ofispring. It is axionatio that like bogets like, and yet overy thinking man reglizes that there are oertain difierences between the parent and the ofsspring. Genetios is oonoerned with both problems: why the oifspring resembles the parent, and why it diffors from the parent.

Bince each individual oxiginates from a single fertilized cell (or in the oase of parthenogenetio reproduotion from a single unfertilized oell) it is ovident that all hereditary oharaoters raust be deterinined in this singlo dell. The meohanisa by whioh this takes place is to be found in the nuoleus of the cell. The aotual doterainers of heredity seem to be the gones whioh ere oarried on the ohromosomes. A gone has never been seon even with the most powerial miorosoope, but they are postalated as boing ainuts bodies loasted on the ohromosomes.

The theory of the gene was first promulgated by horgan, Bridges, and their assooiates eariy in this oentury. Their work was conoerned ohiefly with a small leaiterranean frutt ily. Drosophila melanogaster. Chey belleved that the genes were arranged in linear ordor on the ohromosomes. Beoause of this linear arrangeaent it is poseible to map the ohromosomes and to say at exactiy whioh point the gone for a oertain oharaoter is looated. The gap of Drosophila is fairly omplete and its accuraoy has been confimad by oytologioal studies.

Each gene probably determines several oharaoters, but it is named according to the chief oharacter whioh it determines. Obviously it is possible to stuady only those body oharacters which are external. No doubt the internal anatomy and physiozogy are determined in the same way as the external features are determined, but it is impossible to study them at present. It is estimated that Drosophila has between 3,000 and 5,000 genes, although estimates run as high as 28,000. Of these only about 600 are known. The reason for this is two-fold: it is impossible to analyze internal characters as we mentioned above; and the fact that genes ace disoovered only when two genes at the same loous produce different eifeots. Genetios is based upon a study of these differences. Vere all plants and animals alike, the study of inheritence would be impossible.

Now how do these genes operate? It is oonoeived that they are arranged along a ohromosome in a line. All the ohromosomes, exoept the sex ohromosome s in one sex, are paired. The genes on the ohromosomes and the ohromosomes themselves line up against one another very muoh in the fashion illustrated in Figure I. 1)

1) I personally do not believe that this is the correct piotare of the meohanism of inheritance. I am inclined to agree with Goldsohmidt that there is no auch thing as a gene. However sinee the Morgan-Bridges soheme is still dominant in Genetios, I am presenting it here.

Figure I: Illustrating the ohromosones acoording to tha lorgen-Bridges sohome.

Thus a is opposite a, B is opposite b, 0 is opposite o. and so on.

To said before that the genes are diecovered only whent two 0.2 thom have difforent effects. It has been found that in nost a ases one gene appears to be nore powerful than the other, and thms is able to oause its affeot to appoar when matohed with its companion genc, known as its allelomorph or allel. This gena is known as the dmanant gene and is ulways designated with a apital lotter. Its allal is known as the recessivo geno and is designated with the corresponding saall letter. Thus in human eye aolor brom is dominant over blue. I) The brown factor or the gene causing brown color may be designated with the letter "B" and the blue faotor ornthe gene asusing tho blue color may be deaignsted with the letter "b". Thus if "B" is linod ap opposite "B", the ey as are brown: if " g^{\prime} " is linad up opposite " b ", the oyes aro also brown because"B" is doainant over "b". Fhis oolor oannot be dis-

1) Aatually there are a number of faotors involved in human eye color, and this soheme does not always hold. However as a general statoment. this sohome ifts the oaso.
tinguished Prorn the brown oolor in the ifret case. Apparentiy it is the same oolor. Only if "b" is lined up opposite "b" is the oolor blue. ${ }^{1)}$

Morgan and Bridges nover attompted to postulate the exact nature of the gene. Howevar their followers did postulate that thoy wore wighly aompliaated protoin bodies. And it pollows irom the thoory of the gene as it was pronuigated by Morgan and Bridges that the gens is some sort of a separate entity, protein or otherwise, loosted upon the ohromosome whioh bears it. Indoed some genetioists believe that the tiny buape which appear on the gient salivary ohromosomes of Drosophila are the genca. However Goldsohnidt has recently thrown a nonkey wrench into the theory and has done it so effectively that at least in my opinion the ontire theory of the gene will have to bo discarded or at best revised. In onge of his recent books, aftor disoussing the nature of the gene, he says:" the proceding sontenoes bring us now to tho point where we have to ask ourselves whether or not the theory of the gene as the heraditary unit of aotual soparate oxistence is still tenable. The faots regaraing the position offects ${ }^{2)}$ which we heve mentioned

1) See Rigure III, p. 22
2) osition efiects are those effocts whioh it has been disgovered oertain "gonës" have dopanding upon their looation in the ohromosone. For instance it has boen disoovered that if a certain gone is translocsted onto a ahromosome other than that one on whioh it is usually located, it has an ontirely difierent afioot. This should not ocaur if the Norgan Bridges theory is oorreot.
have led to a situation where genemike efieote are attributed to contiguity betwoen difioront points in a rogion of the ohromosome assumed to represent difforont genes and the so-aalled inert material. ${ }^{1)}$ The thoory of the gone has certainly to be stretohed oonsiderably to allow a desoription of suoh facts in terms of genes. It thore no alternative? It seens that these faots and a number of others point to a theory of the gorm plasm in whioh the individual genes will no longer exist". 2) Goldschaidt has not yot definitely formulated his theory, but points to a theory ascording to whioh the entire ohromosome will be regarded more or less as a long organio ohain moleaule. A aertain arrangement of this ohain at a certain point neans the devolopment of one oharaoter and a difierent arrangement of the ohain moans the development of another oharactar. Allelomozphs then would be ane to difforent stereoisomores.

In his latest book he says 02 his new theoryg" liet us oompare the ohromosome to a very long ohain moleonle of a protein. The linear pattern of the ohromosome is then the typioal pattern of the difierent amino-aoid residues. Let us asewe that this chain moleoule aots as an autooataolytio proteinase (an assmption required for any model of the gexin plasa). is it is known that each protein (and therefors probably each proteinase) is oharaoterized by the length of the ohain, the type of anino-aoid restaues, and the

1) That portion of the ohroaosome on whioh no genes have
2) Goldsohmidt, Riohard Mysioiogioal Genatios, p. 309
specilic order or pattern or whythm of the repetition of these residues along the ohain, innumerable types of protein may be obtained by pematation of these three variables, without any change within the individualmresidues, the looi of the ehain; still more may be obtained if different polypeptids are united end to end in a superahain. The mechanios of the possible changes from one type of protein to another by a pattern ohange involving the three variables may be desoribed in terms equivalent to the wo rds breakage, inversion, translocation, delotion, rearrangenent. A series of stops will probably be needed to transform one stable pattern into another though the details can hardly be undorstood jgt. As soon as this tran eformation is oompleted, a new protein, proteinase , ohemical system has beon achieved. It is possible and conoeivable that within one such long ohain, small local pattern changes (stereoisomexisms) oceur whioh do not change in a general way the cataclytic activities of the whole though they impair it.A similar condition applied to small parts of a ohain molecule would be a perfeot model for mutations if matations were aotually with position effects as we alaim". 1)

Recent physiologioal investigation has tended to favor this theory of Goldsohmidt. Nuoleio aoid sesms to be ono of the constituent oomponents of the ohromosomes. Fron the structural formula given below we san see that such a

1) Goldsohmidt, Richard The Material Basis of Evolution, p. 248
theory is at least possible (Figure II).

But even thoagh the theory of Horgan and Bidges may be wrong the data and laots whioh thoy have presenten are oorreat. We are able to study the results of the aotion of the genes even though wo are not able to undorstand their onstitution. The results of genc aotion wore stuadied

Pigure II: The Probable Cheaical
structure of inucleio Aold
by the earliest genetiaists. The first of these was itendel, who might woll be known as the fatizor ai genetioe Hendel was an Austrian monk who ontered the Augustinian

Monastery at Brlinn, Austria, at the age of 21. There in the monastery garden he oonducted his famous experiments with sweet.peas. He pablished the results of his work in 1856, but his famnus paper lay unappreaiated until the tum of the century when it was discovered simultaneously by three independent soientists, De Vries, Correns, and Tsohermak.

Mendel was interested in studying inheritance of oharacters in the wweet pea plant. He was the first to use the statistioal method, and it was this that proved to be the seoret of his suogess. He discovered that when he orossed a number of tall plants with a number of dwarf plants, the resulting plants were all tall. However when he orossed these tall plants onee more, three quarters of the resulting plants were tall and one quarter dwari, resembling in this respeot their dwarf grandparent.

Refleoting on these results, Mendel oame to several conolusions, and these are now known as Mendel's laws. First of all only one oharaoter appeared in the first filial generation (known as the F_{1}). Even though one parent had been dwarf, all the F_{1} plants were tall. Secondly, the dvarf character, although it disappeared in the F_{1}, was not lost since it reappeared in the seoond filial generation (F_{2}). The tall oharaoter Mondel oalled the dominant, and the dwarf oharaoter he oalled the recessive. One further point seemed olear. If the fautors are supposed to ooour in pairs in each individ-
ual, some method must exist whioh keeps the laotors in pirs from generation to generation. Hendel assumed that only one of the two faotors of each pair gets into each gemm oell. Foday studies of the process of melosis have oonfirmed this. Colls, we know, reproduce themselves ordinarily by the prooess of mitosis. Eaoh ohromosome splits in two, so that each oi tho daughter celle have the same number of ohromosomes. But throngh the wise providence of the Oreator germ oells do not roproduco in this way: othervise the number of ohromosomes would double in each generation. Instead thro gh the process of meliosis the number of ohromosomes is halved in the germ oells. Thus the ofispring recoives hali the species number of ohromosomes from its father and halif from its nother. We remarked before that chronosomes are paired, exoept for the sex ohronosomes in one sex. In meiosis then one ohromosome from each pair of ohromosones is plaoed into each germ oell.

Now let as see how these laws of Mendel operate. The tall pea plant would be designated with the letters "min and the dwarf pea plant with the letters "tt". Such plants where both genes are alike are said to be homozygous. After meiosis takes place, only one of these factors is in the germ cell. These two cetls unite to form the F_{1} plant whioh is designated by the letters "Mt". It is said to be phenotypiaally tall (tall acoording to its appear-
anco) but genotypically (secoraing to the oharaoter of Its genes) to oontain also the recessive dwarl lactor. Migure III illustrates what happens in both the F_{I} and the F_{2}. Note that in the F_{2} four possd ble combinations oi genes are to be had.

Memosis

5. $\mathrm{bb} \times \mathrm{bb}$
b b bb
(blue) a
Figure III: How Mendel's Laws work. In the first series we have a oross betweon a tall pea plant and a dwar? pea plant. In the second aase we have the possibilities with human eya oolor (See note on p. 25). fi illustrates the possibilitios when a man homozygous for brown marries a blue eyed woman: 42 illustrates what happens when both parents are homozygous for brown: 馀 illustrates what happens when one parent is homozygous for brown and the other heterozygous: illustrates what happens when both parents are heterozygous: and if 5 illustrates what happens whon both parents are blue oyod. This diagra covers all possibilities and with it it is possible to trace through several gene rations.

Ve said before that the study of genetios was possible only beoause of a difference in genes found at the same
loous in the ohromosome. The question now arises how these differences and ohagges arise. I have no doubt that some of them were present at the Creation. But it is true that many have appeared since that time and are still appearing today. These ohanges are known as mutations.

Jutations may take place in somatic tissue, that is, in body tissue outside the germ oells. Such a mutation oocurs when a tree is disoovered with one branch having double leaves. We are not ooncerned with these since they do not affeot the germ oells and are therefore not transmitted.

Hore important are those mutations whioh ocour in the germ oells. These may be of two types, either dominant or reoessive. For our purposes in this paper, the following facts should be noted:

1. Most genes are exceedingly stabie. The natural matation rate is very low.
2. Different genes have different rates of mutation. Some mutate very rarely:others under certain oiroumstanoes are high as 100%.
3. Hutations may oocur at any point in the life history of the oxganism, though they seem to ocour most frequently just before or during the proeess of meiosis.
4. The rate of mutation in various genes may vary in different tissues or at different stages of devel-
opaent of the organism.
5. A mutation is usually regarded as a ohange in a gene, not tho loss of a gene. Sone changes whioh were at Pirat regarded as matations, as the Bareyed oharaoter in Drosophila, have been found to be dee to the deletion of a portion of the ohromosone, but this is not truly a matation. It is also believed that many "lothal" mutations are aotually a loss of ahromosomal material.
6. Hore than one ohemge may noour in a given gene, produoing multiple allelomorphs, whioh usually afieot the same oharactor in difiering degrees. Thus ingtaad of having only two ohar otors as we have for height in the sweet poa, we have four ohar aoters for ooat oolor in rabbits, all of whioh are daterained by allelomorphic genes at the same loous. This is true for cost oolor in most aninals.
7. The dirsotion of mutation is however "preierential". oocuring cure often in some directions than in others. In other words, matation does not wour by ohanoe, but it is under the direction of some gaiding force whioh we may well $1 d$ ontify with God.
8. The mutability and preforential direation may themselves be ohanged through matation.
9. Aosording to the Bridges-Horgan theory, mutations
appear to be ohemioal ohanges. cooording to the theory whioh Goldsoimidt seems to favor, they would be ohanges in the arrangement of the "a" ohain, and two different genes at the same loous would merely be isomeres.
10. Mutations are usually harmful to the organism. This is undoubtedly, so far as we are concerned in this paper, the most important point with regard to mutations. We will have os easion to return to this point again.
11. Nutat ions are usually reoessive to the wild type. This is related to the point above, since, as we shall see, almost all reogseive mutations are now regarded as at least somi-lethal.
12. Mutations with slight effeots are muoh more oommon than those with marked effeots.
13. Hutations with no visible effeots are nost oommon of all. This is in line with the faot that many mutations affact internal anatomy and physiology, and no teohnique has thus far been developed to study these.
\checkmark 14. Radiation may greatly inorease the natural matation rate. This is one of the ohief evidences for evolution, and we shall have oooasion to discuss it further later. ${ }^{1)}$
1) For Goldsohnidt's views on the whole subject of mutations, see p. 161 f .

Frequently there are disoovered exoeptions to the Mendelian principles which can be explained only by assuming that one of the factors in a homozygous state causes the death of the zygote. is stated above, when we appss two heterozygotes, we expect to get a ratio of three dominants to one recessive. But when Landauer and Dunn ${ }^{\text {I) }}$ arossed two oreeper chickens, they disoovered a two to one ratio instead of the expected three to one raio. Seven-hundred-seventyfive oreeper fowls resulted and 338 normal fowls. Now it is known that oreeper, a breed in which the wings and legs are oonsiderably shortened giving the ohiokens a squatty appearance, is a dominant oharacter. From thesebdata and other data which oonfirmed these results, they postulated the theory that whenever the faotor"oreoper" is homozygous, it results in the death of the zygote. Thus "CO" dies, "Co" is a oreeper chioken, and "co" is a normal chioken. What happens when twa oreeper fowls are interbred is shown in Figure IV.

Other lethals that are recessive are more difficult to discover, but teahniques have been developed for the study of them, partioularly in Drosophila. Phis method, discovered by Muller, is known as the $C 1 B$ method. In the X ohromosome (the sex ohromosome) of Drosophila the following three factors appear. "O" represents a dominant factor whioh prevents all orossing over in this pair of chromosomes: "o"

1) Iandauer, W., and Dunn, L.C. Journal of Genetios, 23 (1930), p. 397
is the absence of this faotor. "in" represonte a normal factor for viability: " l " is its allelnorph, known to be lathal, since all R1ias of the formula "II" of "IX" ("Y" rapresenting the male equivalent of the fonale " X " ohronosome which is not homologous and carries very fow genes) die. "B" ie a dominant

Jigurs IV: Illuatrating a oross botwaen two ereepor fowls

Paotor for bar oyo, while b is its wild type allelomorph producing normal eye

Huller produood a stook in whion the females were heterozygous for these threa fuotors, having CIB on one chromosome and olib on the othor. These oould live beoause tho lathal " 1 " was covered by its norial dominent alloloanorph. Suoh Pemales werc mated to (aLb) (X) males. Of the female offapring, the bar oyed flies would darry CIB on one chromosome (from the mother) and 6Ib (from the father) on the other.

These bur ayed flies were then bred to normal males (oLb) (Y) and the offispring examined. Naturally half the males died beause of the lethal reosseive reaeived from the origins female parent. The other half of the males reaeive theix ohromosome from the original male paront. If a rooessive lethel has oourred thore, these flies will also
die, sinoe they recoive the lothal with no noratal slieloworin to cover it up. Hence large numbere of plies could be oxanined for lothal sutct ions simply by looking for oulturea where there wero no asles. then auch a oulture is Poand, it is bocanse of a lethal produoed in the X-ohromosome of the alle. The ohart in IIgare I shows how this nethod works.
other Investigators have doveloped alailar nothode with siallar rosults. That we are coost ooncemed with here sre

Pigure V: The Nullor alB method for doteoting lothais.
these results. Table I gives the results of Luller's work. 1) It aight bo eald by way of explanation that jullor was studying the production of nutitions by X-radiation.

Wa are not interestod in the ailforence betweon the radiated and non-radiatod shies, but we are interested in the lact that in the iirst group, the radiated group, there were 49 lathals and four semi-lethals for the one visible mutation. In the sesond group there ware 89 lethals, 12 semtilethals, and only three vieible mutations. These data

Sratment	it oi Portile F2 oulturns	Now nutations		
		lethal	seai-10thal	viable
Untreated	198	0	0	0
	676	49	4	Iplus
	772	89	12	3plus

> Table I: Results of uller's work with Drosophila using the olB method

0lesriy show that nost mututions are either iathal or semilethaj.

Loreover the vast aajority of geneticists admit that most reocesives are at least semi-lethals. Sinnott and Dunn say: "forcover many recessive fators partuke of the nature of lethals, sinoe individuals homozygous for them are less visble than the 'noranl' or wild type". ${ }^{2)}$ Chis was very ovident in the work whiof I personally oarried on last

1) Kaller, A. J. Kadiation and Gonetios, Marioan liaturalist, vol. 64
2) Sinnott, Z., and Dunn, L.C. Exinoiples of Gonotios, p. 114
your. If viability no fortility were hormal, the two olasses + (the dosignation for the ild type, mado up alnost oxolusively of dominants) and "ab" should have had the same number on thom, but thoy did not. (Soo Table II). This oifeot was brought ubout by oniy two recessive genas. The rest of the genes, of which there are no doubt seversl thousands, are, we assuma, doninant or at loast the very ganc genes that + has. These results are not isolated. So far as I know, most inves-

Cross$a-b$	$\begin{aligned} & P_{1} \text { virgin } \\ & \text { fonales } \end{aligned}$	$\mathrm{F}_{2} \mathrm{maz} 108$				
		+	a	B	ab	Total
vi-ho	v1/ho	89	480	784	24	1377
v1-sb	v.2/8is	428	265	343	225	1259
v.l-1e	立 $1 / 10$	303	417	500	15%	1377
\%1-bl	vi/bl	375	464	383	233	1355

Table II: Results of crosses with vainless in Habrobragon jugl ndis. I)
tigators who have worked on the problem have had the same rosults. In rable III, I shull present the data from one ot her investigation which is typical of the results generally achioved. Clearly these results shoz that, at least with isbrobracon Juglandis, recessive mutations are dolinitely somi-lethal.

Mendel worked with seven difierant gets of oharaotors in the sweat pou, and on those resultis prablished his paper. By some stroke of luok, oomparable to the atoke of luok Morgan and Bridges had in pioking on Drosophila melanogaster

1) Klotz, John Linkage Nasta of Voinless, a Ving Faotor in ingroaracon juglandis, Thesis, HeS., University of inttsburgh. $1040, \mathrm{p} .18$
for their material, each of the pairs of oharactere which he piaked were loosted on differont ohromosones. Had he pioked two pairs of oharaoters loasted on the same ohronosome, his results woald havo been vory confusing to hir. We know now that suoh faotors do exist, for there aro thonsune of genes and only a rolatively few ohroaosomes. Sinoo genes do not eeparate in moiosia, but ohyomosomes do, ne nould expeot two genes that are on the same ohromosone to remain together and

Oross$a-b$	$F_{2} \text { Virgin }$ ferales	$\mathrm{F}_{2} \mathrm{males}$				
		+	a	b	ab	total
X-8w	Y/siv	261	23	293	30	608
Y-sb	X/8b	193	50	124	92	$\triangle 57$
Y-fo	Y/80	263	37	147	53	480
Y-rad	Y $\times 1 / \mathrm{ra}$	218	23	174	18	433
Y-od	Y/ad	245	so	140	33	456
Y-to	Y / ta	48	16	10	8	72
Y-ISh	x / Bh	265	13	96	11	285

Mable III: Results of orosses with yellow in Habrobracon jaglundison)
and not to separ to in a random assortment.

We find just such exoeptions to the law of randon assortment: we find cases where paire of faotors do not assort at random, but tend to stiok togother in the way in whiok they onter the aross. The first of these was disaoverad in sweet peas by Bateson and Punnott in 1906. We oall s . oh faotors

1) Catizone, Olge the Jinkaze Relations of Yollow, an antonnel Muator in iahrobraoon Juglandis, Thesis, h. S. . Univorgity of sittgburgh, 1958. p. 23
linked íaotors, and we explain linkage by assuming that the pairs of factors conoerned are oarried on the same pair of ohromosomes.

Two such linked factors are black body and long wings in Drosophila, and their allolomorphs, grey body and vestigial wings. When these two are orossed, all the ofispring have grey bodios and long wings, sinae these are the two dominants. These grey-bodied, long-winged flies are now backorossed with the double recesssve, black-bodied, vestigialwinged filios. Ordinarily wo should expect a I:1:1:1 ratio (See Pigure VI) Aotually we ifind very few black-bodied. vestigial winged ilies or grey-bodiea, Iong-winged flies.

In other words, the faotors have appeared in the same

$\mathrm{BbVv} \times \mathrm{bbvv}$	BbVV x bbvr	BbVx \times bbvv	BbVk x bibve
$B V \quad b V$	B ∇ b ∇	bV b	$B 7 \quad b$
Bb V	Bbrv	bbVV	bbvo
Black body	Black body	Grey body	Grey body
Vestigiall wings	Long wings	Vestigial wings	Iong wings

Figure VI: Expeoted results from a cross between a heterozygous Black-bodied, zeatetical winged fly. and a grey bodied, long winged fly.
way that they entered into the cross throughbtheir grandparents. It is therefore assumed that the two factors are linked, and that the genes which bring them about are 10outed on the same ohromosome. To indiaate this they are not written BBVV and bbVV, but (Bv) (Bv) and (bV) (bV). (See Figure VII).

It is to be noted thit there are a few of the type flies,
and a few of tho double recessives. atually 42% of the flies have blaok bodies and long vings, 42% have grey bodies and vestigial wings, 8% have grey bodies and long wings, and 8\% have blaok bodies and vestigial wings. How is this to be explained? If the genes are linked, how is it poseible for type and the double reoessive to appear? This introduces us to the phenomenon of arossing over, whioh is one of the most important conoe ts in modern genetios. It is based on the oytologias evanta in the process of moiosis. In reality the rooess of theiosis is not so siaple as it was outined earlier in this paper. It is really a very oomplioated process. What actually oocurs is thet each ohromosone divides in two so that in the plase of each pair of ohromosomes there are now four know as a tetrad. These are distributed in a serios of steps until oach of four oells has one of the ahromosomes. In these procosses the ohromosomes oome to lie very ologe to one another, and from time to time exchange homologous parts. Thus it is possi ble for genes to oross over froa one ohromosome to another (iseo iigare VIII).

$(\mathrm{BV})(\mathrm{bV}) \times(\mathrm{bv})(\mathrm{bv})$	(BV)(bV) $\times(\mathrm{bv})(\mathrm{bV})$
$(\mathrm{BV})(\mathrm{bV})(\mathrm{bv})$	$(\mathrm{bV})(\mathrm{bv})$
Blaak body	(bV)(bv)
Long wings	Gray body
Lestigial wings	

Pigure VII: Inharitanoe of linkej oharaaters

Beasuse of this phomomen of orossing over, it is possible to map the ahromosome and deteraine at least relativeIf where on a ohromosome certain genes are loated. It is
postulated that if oortuin genes are very close together, they will bo separated very seldoid in the process of arossing over, while if they are distant sron one another, they will tend to be saparated up to 50% of the time. Map dietanoos are caloulated aitor nathonstioul correotions have been made acoording to the number of arossovars in the total nuaber of filies. Thus in the Drosophila oase above, the
Parents

olorless colored	
axy	starchy

	c 0 w a	colorless waxy
	, ${ }^{c}$	colored starchy

Jigure VIII: Diagranatio Illustrativa of the Gytolegical evdience for aroesing over.
total number of orossovers aonstituted about 16% of the total. After correotinns have been mace, it is discovered that they ara separated 28.5 unito on Chromosome II. That these distanes are relatively oorract has been condirned by oytologiosi evicenoe. They ere not absolutely correot, be-
oause there are inert regions on the ohromosome, regions whioh do not contain any mutant genes. liaps have been prepared for Drosophila melanogaster and for maize. At present a map of Habrobracon juglandis is in the prooess of preparation.

Finally in any study of genetios, the question arises: how may we be oertain that the hereditary iactors are carried in the chromosomes? Isn't it possible that there is soine other way in whioh ohar cters are handed down from generation to generation? The following points, I believe, furnish the proff that our present theory of inheritence solely through the ohromosomes is the correct one.

1. Heroditary factors are arried in the sperms or eggs or both, aince only these bridge the gap between generations. While it is true that in many vertebrates and in many of the lower forms the embryo develops within the body of tio mother and so conoeitably might reoeive some hereditary faotors from her in another way, it is also truo that in other forms the sperms and eggs are shed into the water from the patents and that the principles of heredity appear to be tho same for all species.
2. Within the spocies, the sperm and the egg (with certain exceptions suah as sex-linked faotors and aberrations) contribute qually to the inheritance of speailia faotors. Reoiproaal arosses, i.e., $A B \times a b$ and ab $x a B$ give idontioal $h_{1}^{\prime} s$.
3. Although the egg has a rolatively large amount of oytoplasm in relation to the nucleus, the spera is praotically all nualgus. Horeover in fertilization whatever oytoplasm the sperm has is left outside the egg and only the nuclei unito in actual pertilization. Thus only the nuoleus appears to be essential in the transmission of hereditary factors.
4. Of the nuclear oontents, only the ohromatin material appeare to be acourately divided at mitosis and segregated during meiosis. Horeoter the ohromatin is formed into ohromosomes with a oonstant and oharacteristic number and appearance for each speoies.
5. There aro striking parallels between the behavior of factors as soen in the results of breeding and the behavior of ohromosomes as seon under the microscope. Factors ocour in pairs in the cells of the individual: so do chromosomes. Cextain factors behave as if only one nember of a pair were present in one sex: only one nember of one pair of ohromosomes is present in the corresponding sex. The number of linkage groups is as a rule definite and constant for any species: so is the number of ohromosomes, and in those species whioh have been oarefully studied the nuaber of ohromosomes is the same as the number of linkage groups.

One oif the most distressing exoeptions to this theory was the behavior of plastids in plants. It was discovered that they did not behave in the way that they should have if they
were inherited through the chronosomes. Thorough investigation of the problem seems to indicate that the plastids axe a meohanisa all by themeltos. Thoy are not governed by the ohromosones, but seem to reproduce by mitosis from the parent plastids themselves.

From time to time there have been other phenomena roportad .nich at first glonoe semed to indicate that inheritance is governed at least to some extent by the cytoplasm. While genetioists have not been able to answer all these cases satisfactorily, there is at present no indication that there is any suoh thing as inheritanoe through the oytoplasm. Goldschmidt discusses all these so-called oases of oytoplasmic inheritance and says: "Shus wo conclude that the oytoplasm is mainly tho substratum for genic aation in which all those decisive processes take place whioh oonstitute developront and which are steered by the genes. The specificity of the oytoplasin is therefore one of the prerequisites of orderly developmont, and this is tacitly assumed when the action of the genes is being disaussed. Thus far hovever no faot is known which would force us to assume that speoific hereditary traits exist that are pransmitted through the cytoplasm and are individually caused by a genic property of the oytoplasi. The plastids of plants are probubly a third independent constituent of the cell in regard to heredity". 1)

[^5]We turn now to a gonsideration of the relution of genctios to evolution. It ia ganer ily udaitted thet the mechaniam for evolution must be sought in genetios: indoad onthusiastio ovolutionistg proclaia gonctios to be "a laboratory osporiment in ovolution". Shull anys: "hae easiest way to bring about modifigation of a species aith a high dogroc of stability of eatoh now stato vould be to introduce the ohanges into the hore itury units; and thace sooms to be litito doubt that this is actually what has happened. The physioal basis if ovolation is thus iometiosd with the physioul basis of horasity". J) Sinnott and Junn say: "The invortsnoe of a knowledge of inharitance for the devolopacnt of ovelutionary theory was reoogniad when the young science of genetios (sometines know as exparimentai avolution) was established. ... In regent yuars nowaver a aore omplete andorstunding of thoir own problens has aado it possible for genetioists to make substantial contributions to a knowledgo of the noohanisa of evolution, especially s to two of its problems. Shese are first the origin and nature of inherited variations and second the proqesses by mhich these varlations give rise to segrogated groaps of indivicuals, tho ne.. racesm speoies, and higher tazonomio atagorios".

Flyst of all. what thoory of ovolution aro wo dealing with? It is well known that alaost avery evolutionist has his own partioular theory or at leagt modifiaation of the thoory of

1) Shujl, A. Evoiution, p. 68
2) Sinnott, B., and Dunn, L. O. Op. Git. pe 345
evolution. But by and large the prevailing the ory today, the theory whioh permetes all obher theories, is a NeoDarwinism. Darwinism is not doad, not by a long shot. DarWinism today is still very much alive. Tho coneept of a survival of the fittest and the survival value of certain oharaoters still prevails among scientists today. Likewise most soientists todey belleve that ovolution has come about through the oumulative effeot of many soiall ohanges. Indeed Jamarakism is not yot doad in sciontifio airoles today: it has only been plaoed on the shelf. No scientist holds to Lamarckism today beoause the inheritinoe of aqquired oharacteristics was effeatively disproven by Weismann, who out off the tails of 19 gen orations of rats without noting any offoct and then gave up in disgust.
liodern genetios today is unanimous in denying the possibility of an inheritance of somatic ahanges. Shull says: "No satisfaotory evidence that a soma may impreas its oharaoteristios, or any oharacteristios, upon the germ oells within it has ever been obtained". ${ }^{\text {I) }}$ Ana Goldschmidt speaks of the "well known pact that heritable effects of the environment with a purposive rasponse of the germ plasm to environment have never be on proven and are considered as aotually impossible on the basis of our present genetio knowledge". 2) But Lamarakism is such a satisiying theory, a theory whioh oxplains so many things, a thoory whioh would solve almost every evolutionary dififoulty, that
3) Shull, A. Op. Oit. p. 102
4) Goldschmidt, R. Matexial Basis, p. 102
the moment there was disoovered the slightest evidence for the inneritance of aoquired oharacteristics, Ismarokism would spring forth full grow onco more.

Now how do geneticists believe evolution to have taken place? Thers are three methods whioh ars postulated. First of all, it is believed that evolution takes place through recombination of genes. In other words, now forms develop through new oombinations of genes already present in the chromosomes of the parents. Shull gays: "A olear notion of the relation of heredity to this long range evolution may be had by laying emphasis on the phonomena of widespread ocourrence, and upon the more specialized ones only when they may servo an ovolutionary end with relative promptness. In front rank among these phencmenam as a continuing source of change is the rearrangement of the genes". I)

There is much to be said for this idea. The variety that is possible is infinite. Vith only four pairs of genes, thirtysix uombinations ara possible. Now most org njesms possess several thousand genes. Assuming this number to be 6,000 (3,000 pairs) and assuming that only 1% of these 5,000 loai in the ohromosomes are ocoupied by more than one kind of gene, anu iisti, the number of kinds of genes at one loous is not in any oase more than two, the number of possible combinations of gones in the species would still anount to the staggering total of 3^{30} or over 200,000 billions. Or

1) Shull, Op. Cit. p. 78
suppose an organism possesses only 1000 genes, eaoh oapable of producing ten allelomorphs. Then the possible gene combinations that may be formed are 10^{1000}. Shull remarks: "It is obvious that suoh a situation offers abundant material for evolution". ${ }^{\text {l) }}$

A seoond way in which evolution is postalated as having taken plaoe is through ohromosomal aberrations. By this is meant sore ohange in whole ohromosomes whioh does not affect the genes (ait ough acoording to Goldsohmidt any reageangement of ohromatin material would neeessarily involve a ohange in the genes as well). Chromosomal ohanges are of severalkinds. Occasionally several ohromosomes are added or subtracted: the number of ohromosomes may be doubled or halved. Fragments oif ohromosomes may be added or subtracted. Portions of the chromosome may be inverted or translooated. It is interessing to note that De Vries' famous theory was based on suoh ohromosomal abormations. Although he coined the term "mutation", he never saw what we regard as a mutation today. Oenothera, the evening primrose, the plant with which he worked, is a plant that is noted for the number of ohromosome ohanges whioh are responsible for the diferent varieties.

All of these ohanges in the ohromosomes have visible effeots, and this is regarded as one of the chief methods by whioh evolution takes plaoe. Of this method Shull says: While much of what is known regarding genetio ohange through

1) Shull, Op. Cit. p. 81
ohromosome fragmentation has been disoovered in the vinegar fly Drosophila, enough of it has been confirmed in other species to suggest that it may be a fairly general process. If suocessful evolution an be derived from it, therefore, it is legitimate to speculate upon its possibilities in any or all of the higher aniaials or plants!l' The "if" is the most important word in the whole seotion. It is to be noted that Goldsohmidt's new theory of evolution whioh we shall disouss in connootion with the oritioism of this mothod of evolution fits into this category.

The third method of evolution is through mutation which we have discussed above. It is assumed that if mutations oan create new varieties of the same spooies, eventually they ought to oreato now spocies as woll. This is perhaps the most important method so far as genetio evolutionists are conoorned. It is disoussed at length by Shull and by Sinnott and Dunn. For that reason we shall have to eonsider this method at length in our paper.

Since the time of Darwin evolutionists have been attacked because they have been unable to point to any actual ases in the laboratory or in the field where a new species has developed. It must of course be said that it is not exactly a fair demand that oases of evolution in the field be presented. That is ajmost impossible. But we do have a right to expect to see evolution take place in the laboratory.

1) Shull, Op. Cit. p. 951
of late there has been muoh rejoiaing awong ovolationists on this score, beause there have been developed in the laboratory several plants whioh apparently are new species. And so aost biologists today rejoioe that their nach pampered theory has at last beon vindieated and that at lest there is soiontific ovidanoe ior it.

We shall analyze three of those alleged instanoes of the production of new speaies. With few axoeptions, so far as I know, they ara all the result of a doubling or halving of the number of ohromosomes in a species or of the addition or subtraction of a single oh omosorac from the speoies nuabor.

One of these oxoeptions wasamade in 1928 by Karpechenko betwoen a rudish and a oabbugo. The radish used was Raphanus saturis ($2 n$ - the normal namber of ohronosomes - equals 18) and the oabbage was Brassiou olerques $(2 n=18)$. Thus both plants had a ohromosome numbor of 18 . Whe \mathbb{P}_{1} hybrids had 18 ohromosomes, nine from the radish and nine from the oabbage. Nearly all of these hybridg were sterile, but undar favorable conditions some F_{1} plants produced a lew soeds. Somo of the F_{2} plants resembled the hybrid: others pore intermodiate between it and the radish parent. Those whioh resembled the F_{2} hybsid were found to have 36 ohromosomes, the sum of the ohromosome numbers of the two parent speoies. They were thus tetraploid hybride and proved not only to unite oortain oharaoters from both parente, but to
ba Pully fertile and $\hat{0} 0$ breod true to the hybrid and totraploid charactors.

A study of tho meiotia divisions of the p_{y} hybrid ehowed that pairing of the radioh and abbage ohotnosomes did not ooour and the 18 univilents vero generally distributed at randon to the ganetos, each of whioh raceived from 6 to 12 ohrorosomes and were not functionul. Oosasionally in pollen nother colls, the first molotio aivision was abnormal resulting in nu@lei with 11118 ohromosomes so that a fow pollon grisins formed from these contained $9 n$ radish anc 9 abbage ohromosomes.

Sinoe tha F_{2} tetraploids had 36 ohromosones, it is probable that these arose through tho anion of such axooptional FI ganetes so thut the tetraploid would have 18 radish and 18 abbage ohromosones. Heiosis in the tetraploid was regular and normal: 18 pairs of ohromosones vere formed. UndoubtedIy the 9 abbage ahronosomes pairad with thoir nino aabbage homologues, and the nine radish ohromosomes with their homom logues from the same parent socica. The ganetes of the totraploid thus each transaittod nine oabbage and nine radish ohromosomeg and perpetuatod a new set of oharaators in a Pertila intorgeneria hybrid breoding true to ita own type and infertile with both parents. 1)

A Vary interaating axperiment was reoontly performed by Muntzing in whioh he synthesized a new spacies from its

[^6]putsitive parents. He used Galeopsis pubesoens as the ferale parent and Galeopsis speoiosa as the male parent. In both $\mathrm{n}=8$. The F_{1} hybrid was highly sterile: its anthers contained only 8.9% to 22.3% of visibly good pollen., and few good ovales wore produced. In the \mathbb{F}_{2} generation a single plant was found that proved to be a triploid $(2 n=24)$. This triploid plat vas back-orossed to a pure pubesoens. A single seed resulted from the back-aross. It gave rise to a plant whioh proved to be a tetraploid (2n=32). This tetraploid was fertile and beoame the progenitor of a strain which has been named "artificial Tetrahit". Phis artiPical Totrahit is like the real Galeopsis totrahit in possessing 32 ohromosomes in somatio oells and 16 bivalents at meiosis. The meiotio divisions ure with low exoeptions normal. A aross between the artifioial and the natural tetrahit gives normally developed offspring which are externally similar to either parent. The fertility is complete in some individuals, while others are partially sterile (partial storility has been obscrved in some lines of the pure Galeopsis tetrahit). i)

It is postulated that this is the way in whioh the speoies Galoopsis tetrahit originettad. It is believed that in some way the two parent s ooies interbred, and the result was the speoies which we now know as Galeopsis tetrahit. Dobzhansky says:"Although the origin of the natural Galeopsis tetrahit from a oross botweon pubesoens and speoiosa is very probable, it remains unknown then and where the event took place". 2)

[^7]Far more oommon than suoh interspeoifio and intergenorio orosses is the produotion of tetraploid plants from diploid plants of the same species. A number of these have been developed that are sterile with the original parent plant. Ampng these is a tetraploid tomato which has been deteloped by Lindstrom. This tetraploid tomato is orosssterile with the diploid speoies. It was produced asexually by deoapitating young heterozygous pimpinellifollium plants and allowing a oallus to form on the out stern. Nuclear or ohromosomal doubling took place in a few of the oells of the oallus from whioh adventitious tetraploid sprouts arose. Only thee of the 100 tested sprouts proved to be tetraploid. From ons of these larger sprouts three generations were bred. These proved to be completely oross-sterile with the parental speoies. 1)

If we acopt the generally acoepted definition of a species, then, these are new species, for they are sterile with their parents and reprodace after their kind. But let us remember that"speoies" is only a definition and a concept that man himself has set up. It is axiomatic that man olassifies nature although nature itself is unolassified. The same hold true so far as definitions are oonoerned. Nature does not fit into man's definitions, but man makes his definitions to conform to what he observes in nature. ${ }^{2}$)

1) Lindstrom E. W. A Fertile Tetraploid Tomato, Journ. Hered. 23(1932): 115
2) On this whole subjeot, see the previous disoussion on p. 11

Gonoerning our whole systen of tazonomy and olassifioation, Dobzhansky says: "Since the time of Daswin and his framiate followers, the term "natural olassifioation' has meant in biology one based on the hypothetical oommon desoont of orgenianas. The forme united totether in a speoies, genus, elass, or phylum were supposed to have descended Erom a single comion ancestor or from a group of very similar anoestors. The lines of separation between the systematio oategories were, henoe, adjusted, at least in theory, not so muoh to the discontinuities in the observed variations as to the branohing of real or assumed phylogenetio trees. And yet the olassifiastion has oontinued to be based ohiefly on morphological studies of the existing organisns rather than on the phylogenetio series of fossils. The logioal difileulty thus inourred is eiromvented with the aid of a hypothesis acoording to whioh the similarity betweon organisms is a function of their descent. In other words it is belleved that one may saifely base the olassification on studios of the structures and functions of the organisms existing at our time level, in the assurance that if such studies are made comple to enough, a pioture of the phylogeny will emerge automatioally. This comfortably complacent theory has reosived some rude shooks from oertain paleontologioal data that oast a grave doubt on the proposition that similarity is almays a funotion of descent. Now if similar organisms may, however rarely, develop fron dissimilir ancestors, a phylogenctic alassification must sometimes uife dis-
similar and separate similar forms. The resulting system will be at least in some of its parts neither natural in the sesse defined above nor oonvenient for practioal purposes". 1)

Assuming, however, that these are new speoies, they are still no proof or even evidence for evolktion, beoause they oontribute nothing nes. Their pharacters are the same characters whioh their parent plants had except that they are accentuated. No nem oharaoter which did not exist before is brought into the world by them. For that reason they do not contradict the rule laid down in Genesis that all plants and animals are to reproduce after their kind. The two parent plants did reproduce after their kind: their offspring were nothing new.

Horeover the means by whioh these plants were produoed were extremely artifioial. It is inconoeivable that any of these three phenomena should have oocurred out in nature. Under ordinary oirounstances it is impossible for a oabbage to be fertilized by radish pollen, or vice versa. Lindstrom's tomato was not only a ireak, but it was a pathologiaal freak as well. The lact th t ohromosomal doubying took place is evidence of a pathological condition in the plant.

The fact that so few of the now speoies were produced at first is also striking, Mlintzing tells us that under the most favorable conditions only 28.3% of the pollen

1) Dobzhansky, Op. Oit. p. 304 f
was good, and that there were only a few good ovales. Horeover only a single seed resulted from the second cross. Karpeohenko tells us that under favorable conditi ons some of the F_{1} plants produced a few seeds, and he admits that these were the result of an abnormal meiotic division. Lindstrom reports that of 100 sprouts tested, only three proved to be tetraploid. His work was confined entirely to one of the se three tetraploid sprouts.

To be sure, it oannot be denied that Galeopsis tetrahit may have urisen from Galeopsis pubescens and Galeopsis speciosa in a manner similar to that demonstrated by Mbintzing. But it is extremely doubtful if it oould have arisen in the exactemanner postulated by lllintzing. For these reasons I can soaroely regard these instances and other instinces like them as evidence of the production of new speoies or as proofs for the fact that evolution take place. None of them furnish us with even on approximation of the manner in whioh a general evolution of all species would have taken place.

Let me conolude this seation with several quotations which have to do with this subjeot. Of the possibility of discovering a new speoies in the iield, Willis says: "The chance of seeing such a mutation oocur is practically nil". IVith regard to the production of new speoies by doubling of the ohromosome number such as we have in Lindstrom's tomato, Goldsohmidt says:"In animals true poly-

1) Willis, J.C. The Origin of the Species by Large rather than by Gradual Change and by uppy's method of Differentiation. Ann . Bot. $37: 605-628$. Quoted by Goldsohmidt Material Basis, p. 211
ploidy by doubling of the ohromosome set is either not found or is of limited signifioanoe....... Since it seems that oomparable features (fedures comparable to polyploidy in plants) are absent, or at least unimportant in animals, the prooess of polyploidy oannot be regarded as a general evolutionary prinaiple."l)

We shall now look more olosely at the three manre rs whi oh have been postulated as the manners in whioh evolution takes place. It is well to note in the first place that for the first and last, recombinations and matations, there is not even the slightest evidence for the development of new species. For the second, ohromosomal aberrations, there is some alleged evidence, but this oan hardly be acoepted as any proof for the truth of the evolutionary hypothesis. Most important however is the fact t at there are a number of bars to evolution taking place in any of these ways. These bars we shall now disouss.

Turning first to the theory of evolution through recombination of genes, let us look more oritioally at it. In the first place, nothing new is oontributed by gene recombinations. The gene material is already there. The new characters whioh appear either already existed in one of the varieties of the species or they existed in a reoessive state, oovered by dominants. In gene recombinations there is no ohange, nothing new, no addition to the

[^8]qualities and ohar ater whioh already exist.
horeover there are delinite restriotions upon the freedom of assortrient. Rooombination of genes is almost imposs ible in asses of vegetative roproduotion. By vegotetive is meant reproduation by roots, outtings, buibs, and the like. Host of the botanical ireaks of Juther Burbank oan be roproduoed only in this way. That is also true of some of our vegetables. In these plants there is no meiosis and henoe no possibility of genes orossing ovar and reoombining.

Similarly there is a definite restriotion placed upon reoombinations of geaes in those plants, such as beans and whoat, in whioh self fertilization is the rule. Instead of getting rooombinations of genes, there is steady progress toward a homogygous individual. Reoombination is definitely restricted to those genes whioh are already in the plant. It is impossible for other genes not already in the stook to be introduoed.

Some plants, morcover, reproduce parthenogenotioally. In various zorms of the hymontera, parthenogenesis may be practiced either in the absesiee of a sperm or at the will of the female. In these oases the result is the same as in self-fertilizing plants, Gene reoombination is limited to those genes already present in the parent organism. The introduction of new genes from other individuals of the same speoies is either impossible or restriate.

Another restriction on the freedom of assortment of genes is the failure of eertain linkages in the ohromosome to break. Thus in the small ohromosomo pair of Drosophila containing only a fow mutant genes, orossing over is practicilly non-existent. Undoubtedly this is due to the smail size of the ohromosome. In oomparison with others it is truly a dwarf. Beause of its smallness, it is physicalIy impossible for it to twist around its homologue in the same way that the lurger ohromosomes do this. This is probably true not only in the IV Chromosome of Drosophila, but also in all ohromosomes of all speoies that are as sraall as it.

Finally in the male of Drosophila orossing over is praotioully non-existent. Why this is is not yet known. No one has acoounted for this phenomenon up to the present time. This very definitely limits the freedom of assortment of genes in these cases. Drosophila is the only ause in whioh this has been shown to be true, but there is not any reason to doubt that this phenomenon exists in other animals. Tha only reason that other asses have not beon disoovered yet is that other forms have not bet been so thoroughly studied.

Wo be sure this argument aginst the freedom of assortment must not be pressed too far. It is surfioient to reoognize that it exists. Probably there is considerable freedom os assortment among genes. The important oriticlim of the theory is the one first mentiore a: the fact
that recombinations contribute nothing new, but simply reassort oharaoters already present.

The second way in whioh it is postulated that evolution may take place is through ohromosomal aberrations. This implies some peouliarity in the ohromosomes. In some oases a single ohromosome is added or deleted. In others a complete set of ohromosomes is added. In still others, a ohromosome is inverted, and in others a pieoe of the chromosome is translocated or added or deleted. We have discussea the evidenco for the production of new species through ohromosomal aberrations above and have seen that they are no evidenoes for erolution.

Moreover, if we follow the theory of Bridges and lorgan, we an apply the same ariticism to this phenomenon as we did to the phenomenon of recombination of genes: no now contributions are made. It is simply a rearrangement or addition of genes that are already present. No new factors are developed and no new genes oontributed. However there are a number of disorepanoies in the Morgan-Bridges theory whioh incline us toward one that at least wesembles in generai what Goldsahmidt postulates. In that aase transloaations and inversions, deletions and addations would be signifioant and would oontribute new factors. We shall disouss Goldsohmidt's theory in a section at the ond of this paper. It is to be noted, however, that the above mentimned instances of the produotion of new species do
not fall into this oategory, since they are due to the addition of whole sets of shromosomes.

But there are other objections to this theory. In the first place most of the abmarmalities are deíinitely harmful to the individual. Shull says: "At their best such abnormal forms produce bui few functional germ cells; at their worst the chromosome combination proves fatal to the individusl that possesses it". 1) Sinnott and Dunn say: "Although deficienoies and duplioations produce the most marked charaoter ohanges, they generally reduce viability to such an extent that they would soon be eliminated in nature. They probably do not provide an important sourse of continuing viability found in nature". 2)

That has been shown partioularly in Drosophila. It has often been said that in pioking Drosophila Morgan and Bridges had a piece of luok almost as great as Fiondel had in pioking the sweet pea oharaoters that he did. One of the reasons for this statement is the discovery of giant colls in the salivary glands of these flies. They are truly tremendous not only in oomparisan with the cells of other parts of Drosophila, but also in comparison with other animal and plant cells. Because of their size it is possible to study the ohromosomes under a high powered miorosoope and thus observe oytologio.lly various genetia

[^9]effects. Thus it his been possible to study the addition and subtriotion of ohromosomes and correlate this with the aytology of the animal. Normal flies have a pair of sex ohromosomes (in the fomale, two "X" ohromosomes: in the male one "X" ohromosome and one " Y " ohromosome which is not homologous to the "X" chromosome, but is largely inert), two pairs of large chromosomes, and a pair of small chromosomes, four pairs in all. It has been disoovered that this number moy that instead of a $2 n$ fily, we have a $4 n$ fly. Suoh a fly is a normal female. SimilarIy the number nay be halved so that we have an in ily. also normal. Such a $2 n$ fily may be crossed with a $4 n$ fly. The resulting $3 n$ fily is also a normal female.

But if this ratio is upset, the individual suffers. A fly with a normal pair of sex ohromosomes and three each of the autosomes (3n-1) is an intersex, sterile, and showing the oharaoteristios of both sexes. On the ather hand, a fly with three sex ohromosomes ind a pair each of the autosomes (2n plus 1) is a sterile superfemale. All the femele characters are acoentuated, but the fly cannot reproduce. The same is true of males. A fly with an X ohromosome, a Y chromosome, and three each of the autosomes is a sterile male with all the male charuote rs accontuated. It is clear then that a radioal rearrangement of the ohromosomes results in harm to the individual. Either it is completely lethal or the individual is sterile.

The deletion of a portion of a chronosome is usually fatal if it becomes homozygous. $0 \mathcal{f}$ this Snyder saysi "If the missing piece is not too extengive the individuals la@king it may live, especially in a heterozygous stato. Rarely aan an individual exist with a similar part missing from both ohromosomes of the pair". 1)

Thus we see that chromosomal aberrations are usually injurious to the animal or plant affected, and for that reason can hardly be the source of the new species whioh evolution is hunting.

We turn now to what is probably the most signifioant argument for evolution so far as genetias is conoorned. That is the argument from mutations. It is reasoned that if mutations oan cause ohinges in the species, and thus bring about varieties of the same speoies, they oan also cause changes that are large enough to bring about new species. We have disoussed mutations above and have outlined the argument from matations there.

How do nutations ocour? Hare evolutionists and genetioists oannot answer. In naturo they oocur at random: their oocurfence oannot be prodioted. In the laboratory time is too preaious to wait for their ocourrence in the natural course of events, and so the rate ofmatataon is speeded up by ultra-violet radiation, X-radia-

[^10]tion, and other forms of radiation. Radiation has been responsible for the disaovery of most of the mutants in Habrobracon as well as in Drosophila.

The question arises as to whether or not radiation of some sort is the oause of mutations in nature, and the best answer at present seems to be: No. We all know that there is a small amount of radiation on the earth at all times. The ohief source of suoh radiation is the oosmic rays whioh strike the earth oontinuously. Shortly after it was disoovered that mutations could be produced by radiation, it wes postulated that this was the ultimate cause of all inutation. Baboook and Collins made tests in a railway tunnel 1) and Hanson and Heys made tests in a oarnotite mine. ${ }^{2}$ In both these plaees radiation is grouter than on the open surface of the earth. In both of these tests flies reared anid the greater radiation yielded more lethal mutations than those reared on the open sur?ae of the earth, Hewever the difierenoes were not large, and statistioal calculations throw doubt on the validity of any oonolusion that aey be drawn from these data.

Today there is serios doubt as to whether radiation could be tho eause of matations in nature. Shull says: "Some further doubt is thrown on radiation as the oause of natural mutations by the large number of these whioh

1) Babcook, H., and Collins, J. Does Natural Iomizing Radiation Control Rate of Hutation? p. 623e628
2) Hanson, F., and leys, it A posgible Relation Between Naturai Radiation and Gene Matations, p. 43 I
have ocourred. It has been shown that the number of lethal mutations produced by X-rays is roughly proportional to the anount of radiant onemgy used (See thale $I, p .29$). Muller has used this relation to oaloulate how maon radiation there would have to be to have produeed the many mutations that h.ve arisen in Drosophila in the last twenty odd yoars, and finds that the radiation aotually in existence is less than a thousandth of the required amount. He has considered the possibility that radiant materi:l may be concentrated near the germ oelss in the flies, but this has seemed unlikely and some experiments by Spenoer in which another species of Drosophila was reared on a food oulture mixed with ground oarnotite yielded no mutations. The oause of natural matations is therefore muoh in doubt". 1)

On this same subject Dobzhansky saysin Hutation produaing agents other than short wave radiations are in all probability present in nature. This is a Pield whioh has beon extensively explored at present and where disooveries are likely at any tine. But for the moment, one is forced to admit that no securely established conolusions have omerged" 2)

We have mentioned before some of the other difficulties. The foot that most mutations are lethal or semilethal oannot be ovaremphasized. Then too almost all muta-

[^11]tions are recessive, Noroover those dowinants whioh ocour are alnost all lethal. when hoorozyeus. Ho doubt aome of these are defioienolos, the delioiency removing a gene which prevontod the devolopneat of the partiouler aharaoter involved. Gurly wing and stas eye are dominant mutationa in Drosophila whioh are lothal in a homozygous oondition, Notah wing is one of these ominants, lethil when homozgeove, that has definitoly beon proven to be dug to a deliojenoy.

One of the biggest diffioulties that genctio evolutionists face today is the diflioulty oi explaining the origin of dominance. How does it happon that oertain ohar aoters are dominant over their alielomor ins? No one had oven a thaory to explain this. There is no known genetio or phyaiologioal reason why oertain genes are dominant over others. Hero the genctioist mast throw up his hande and say: "I don't know". Alnost every factor in the wild type is now known to be dominant, and in his present bitate of ignurange the genetioist knows only the answer of the theologian to this problom: it aust have boen made that way by a higher powar.

Of the possibility of evolution throagh mutations, Golóschaidt says: "3o-called gons mutations and rocombination within an intorbreading population may lead to a Kaleidosoo io diversifioation within the speoios, whioh nay fiad expression in tho production of subspeaific oate-
gories, if seleotion, adaptation, isolation, migrgaion, eto, work to separate some of the recombination groups,But all this happens within an identioal gene ral genotical pattern, which may also be oalled a single reation system. The ohange from species to species is not a change involving move and more additional atomistic ohanges, but a oomplete ohange of the prinary pattern or reaotion system into a new one, whioh afterwards may again produce intras ecific variation by mioromutation. One might oall this different type of genetio change a Systamatio nutation, though this does not have to oocur in one step as we have seen". 1)

Earliar in the same book he says: "Subspeoies are actually therefore neither inoipient spoaies nor models for the origin of species. They are more or lese diversified blind alleys within the species. The deoisive step in evolution, the first step toward macroevolution, the step from one spocies to another, requires another evolutionar method than that of sheer accumalation of mioronutations." 2)

Thers are other problems which arise in connection with mutations. There is first of all the problem of the directciour of mutation. If mutation ocourred by chanoe, we

1) Goldsohmidt, Hatorial Basis, p. 205
2) Ibid. p. 185 ,
should expect them to ocaur in all direotions. The re should bo no partioular direction disecrnible in whioh cautations wero oocurring. But this is not true. Hatations do not ooour at random. Shull says:"there are any things, howover, which indicate that in the dealing our of mutations the ourds are staoked. The svailable evidence goes to show that there are numerous restriations upon the prosess of modiaication, so that the whoel of ohange, like the wheel of fortune in a ellmanaged easino, betrays a strong tendency to stop ut oertain points. To assume under these oirouastanoes thet evary conceivable type of autation not only may but will ooour ie like supposing that is totrahedon will reat atably in twanty, or a huncred, or indesinitely numorous positions. Morsover a asabl gianco at the mutations whion hav ocourred ebundently in oer tain oxgenicms suggeste they re liaitad in their natara. For ox aple the aye color of tha I?y Drosophila has mutated many times. Vere the direation of theso mutations subjeot to no control, all colors of the spectrum shou d be equally likely to occur. While many shades of red have rosulted from these modifiontions, there has been no blue or green. In view of the frequenoy of mutation of oye coior, one is led to suspect thet blues and greans aro absent boosuse prosophila is inaapable of mutating in that way." 2)
3) Bhuil, Op, Oit. p. 123

Shull then prooeeds to tell us that the reason why the gene cannot mutiato in all direotions is probably to be sound in the high speoifioity of the protein which constitutes tho gene. But if this protein is so highly spocifio that it onnot give rise to cortain eye colors, how is it going to give riso to ohar oters which will set off the individual as an entirely now speaies?
nother fact that makes us doubt that mutut ions are the cause of evolution is the fact that there sre often reverse mutations to type. st first it was not believed that this was possible, but it is now known to be a fact. Evolution however will not advinoe by taking a step forward and then retracing that step again, nor will. it aōvance very rapidly by taking two stops forvard and then one backward. Such retarns to a former ondition have ocourred in a number of gencs. Thts the sosin eye of Drosophila originated as a matation from the white eye, nd later a repetition of eosin oame from the vild type red. Now from the eosin stocks there have risen both white and wild type mutants, both returns to the original and reversals of the earlier mutation. It is a known faat that in Drosophila virilis, a oertan ministure winged type mutates to the wild type with grat frequanoy, about 5% in each genoration. Suoh reverse mututions would certainly tend to slow down evolution tramendously.

Kuch has been mado of the phenomenor of parallel matations. It has bean disaovored that mutations in Drosophila melanogaster and prosophila simulans are very muoh alike. In fiact it ainost seems as if the matations are identiodl. Similar comparisons have beon rade in mammals botween the guinea pig and the peruvian oavy. But this is not necessarily an evidence for evolution. As we saw earlier, our thesis does not require us to muintain that such olosely related forms had two distinot anoestors.

One of the favorite modifications of the Darwinian systen is the doctrine of orthogenesis, a concessionnto theistio evolutionists. It is agsumed that ovolution is iollowing not a randon path, but a path toward a goal that has been set for it by some higher power. It might be assumed that the evidence for directional mutation cited above supporta the theory of orthogenesis. Suoh is not the case. lutations, partioularly in Drosophila, have not been directional in the orthogenetio sense of the $h o r d$. It is possible to arrange the various shades of eye color, for example, in a series of matants grading from red to White. But unfortunatoly this did not ocour. As a raster r of fact the firat mutation from the wild type deep red was White, and the intermediate colors were distributed irregularly from time to time. Horeover instead of one mutant giving rise to another, all these mutst ions oame direatly from the wila tyoe exoept for eosin which arose first
from white.

Another very signifioan paot aboutwatations is that they ara never related in any way to the environaent. Shull says: " 0 t the hundrods of nutations which have been disoovored in vaxious plants nd animals, not ono has shown any incioation that its nature was enviromentally deterained.......In partioular, nututions vere never obVionsly adaptive: mutant organisme vere not, so far as could be seen, better ifted for the onviroment than were the types from whioh they sprang". () This is very signifiont, since it is + oardinal prinoipls that oharaoters anet havo a survival value and that evolation takes place by the developnont of oharaaters wiloh ift the individual to cope betor r with his environnent.

The nuaber of individuals displaying a oertain charaotor depends upon the number of gen os for that ohsracter in the popalation. If there ars only a fow genes for a vartain oharacter in oxistonco, it is likely to ooour very sieldom in the popalation, or if it is a reoessiva gane, it will be ewanped out by tha dominants. aotually however a stable gene ratio is reached in a popalation atter a short time. What this ratio will bo dapenes apon the viability and fertility of the characters involved. Suppese two kincis of genes are involved, "s"and"a: Let the number of gene " A " oqual p anò tia number of gene " 0 " equisl q. Then

1) shall. Op. 0it. p. 152
p plus $q=1$. If all the individuals in an indefinitely large population, freely interbreeding, reproduce at the same rate and all t.jpes survive to the same degree, and if there is no linkage and no overlapping of generations, the next generation will oonsist of p^{2} individuals of the oomposition $4 \mathrm{~A}, \mathrm{pq}$ individuals whose genes are Aa , and q^{2} individuals that are aa. In the next generation under similar oonditions the three combinations should ooour in the same ratio, and so on indefinitely. Thus a stable generatio is established.

Aotually this very seldom occurs. In the first plece, recessive genes are almost always of a lower fertility and viability rate than their dominant a.llelomorph. Then too autations may alfoot these fertility and viability rates and thus ohange the gene ratio. Pinally matations which introduce new genes affect the genc ratio.

The ohances of a single mutated gene surviving are very small. Suppose the population is constant at about a million individuals. The individual oontaining this mutated geno is only one indiviaual in this million. This number, let us assume, is reduced to ten thousand before maturity and the survivors are determined by pure ohance. This reduees the probability of survival of this gene to 1 in 100. If the individual esoapes this elimination and mites, and the pair produce 200 offepring equally with all other pairs so as to field once more a mil-
lion young individuals, one hundred of these individuals will contain the mutant gene. Now the situation of the new gene with respect to its survival is impwoved, since oven with a 90% reduction of tho population before maturity, it is likely to survive.

Table IV, whioh I have taken from Dobzhaneky who in turn took it from Fisher, presents the matter from a slightly different viewpoint. This means that finally if there is no survival value all of 10,000 original mutations will beoome extinot. If these mutations have

Gencration	Probability of oxtinotion		Probability of survival	
	ijo advantage	$\begin{aligned} & \text { 1\% advan- } \\ & \text { tage } \end{aligned}$	Mo advant-ge	$\begin{aligned} & \text { I\% ad- } \\ & \text { vantage } \end{aligned}$
1	0.3,679	0.3,642	0.6.321	0.6,358
3	0.6.259	0.6,197	0.3,741	0.3,803
7	0.7,905	0.7,825	0.2,095	0.2,175
15	0.8,873	0.8,783	0.1,127	0.1,217
31	0.9,411	0.9,313	0.0,589	0.0,687
65	0.9,698	0.9,591	0.0,302	0.0,409
127	0.9,847	0.9,729	0.0,153	0.0,271
Limit	1.0,000	0.9,803	0.0,000	0.0,197

Table IV: Survival of mutations (After Fisher, The Genotio Pheory of Natural Seleation, Clarendon, oxford, 19301 1)
a. 1% survival value, 197 of them will survive. What is meant by a 1% survival value I do not know. But it is

1) Dobzhansky, Op. Oit. p. 130
interesting to note that even in spite of this survival value most of the mutations ill be lost.

As we osn see, thon, the ohances of survival of a mutant gene are really vory slim. Indeed its only hope of survival lies in the repeated production of it by independent mutation. While it is true that the same mutation h is been observed to ooour seversl times, most mutations ocour only once and would therefore in the ordinury course of events probably bo lost.

Population silso plays a very important part in determining the oharucter of the individuals. It has been diso overed that sharp reduction of the population ontails the fixation (homozygous aondition) and loss of genes. In small populations inbreeding is vary oommon and quite close. In suoh a small group there is consequently little variation and fittle ohance for seleotion, which is one of the things on which evolution is postul.ted. Since most mutations are harmful, it is likely that a harminal mutation would be most likely to oocur. This would be soized upon in a small population, would get into a homozygons state, and thus bring on the degeneration and extination of the group. On the other hand, if the population is very large all gene frequencies reach an equilibrium approprite to the oonditions prevailing and there aane be little evolution. Only a population of intermediate size is at all favorable to
evolution.

It is one of the postulates of the theory of natural selection that one factor that has a survival value is protective resemblance. Thus ill an animal evolves a color that resembles its environment, it is less likely to be eaten by its eneaies. This laot that it is able to escape being eaten is said to hive a survivaj. value, and this, it is claimed, is one step in evolution. Thus it is seid that fish whioh are dark oolored above and light oolored on their underside have taken advantage of this protective resemblanco. To an enamy that is below therf they blend in With the lighter water above them, and to an enemy above, they blend in with the dark oolor of the deep water below thom. Lizards ar often mottled, end this is seid to be a protective resemblance to their background. Aadssowwe could eite literally thousands of examples of what is called protective resemblance.
\checkmark Lat us stop to anulyze this argunent. In the fir at place, it tacitly assumes that proteotive resemblance takes place in response to an environmental, stimulis. The animal finds it to its advantage to resemble its environment, and through this wish manages to aqquire a color thet resombles hts environment. No one holds suoh an idea of genetic nutation in response to the desire of the individusl today.

Even assuming that this proteotive resemblanoe has been
acquired by the organisin through some ohance mutation, it is generally aoknowledged today that proteotive resemblance plays little part in the struggle for existence. MoAtee after years of study of the stomach contents of North ADerican birds oame to the conclusion that protection is largely a myth. l) He gives the number of indieiduals of various supposedily proteoted and unproteoted groups whioh were eaten and duaws the inferenoe that all kinds are devoured about in proportion to the available numbers. It is pozsible to seleot some "protectively colored" families which were eaten less citen tham their number would seem to warrent, but at the same time there are other "protected" fanilies which are eaten more often than their number would warrent. Shull says:"On the whole the results of stomach exaninetions are not impressive as evidence of suoh protection". 2)

It is also true that judgment as to whether a Pamily is protectively colored is in a way highly subjective. By that I mean that we are judging proteotive ooloration acoording to human standards. And it has beoome apparent in resent years that not all animals see as we do. It is a well known fact that ants are blind to red light, but that they do see ultra-violet light. It has been olearly shown that other insects are also sensitive to ultra-violet light. Thus

[^12]an animej. which wo term inoonapiouous aould certainly not sately be rogardec ae protacted from attack by a proancious inseot.

Anothor factor that nust be considered is the gize of the object rolative to the obsarvor ana tho latter's iteld of vision. Thas a mottlod linaid lying anong the rooks is si very smat objact in a vary large objeot as viaved by man, bat to ita oaeny it aqy be a relatively large part oir a garil. Iandaqu.pa.

Bor these reasons the argument for evolution fion protective resemblanoe oan saurcoly have any moaning. ivyen Shull adaits: "The notion has been overworkod,appliad thoritioally, and ... sone, perhape many, of the suppoed instarioes of evolution guided by and leading to inoonspiouousnoss robably are not such". 1)

A suother very wuoh ovorworked theory which wes onoo thought to coatributa to the problem of avolution ia the theory of sezual selection. Today this has baen abandoned by nost biologigts. It was aontione a already by Darwin. He belleved that the speoias was originally dull in both soxea, but that individual ralas autatod (although he dig not use this to ra) to somawhat brightar colora whioh aidad thea in winning the famales. By repotition of such mutations and selootion it was genarally bolieved that all of tho malea nould eventualiy

1) Shul工, Op. Oit. p. 174
beconc brightiy colorod. Whis was extended not only to coloration but to any quality whioh might be attractive to the female auoh an the "horns" of the staghorn and othor beetlee, and the ane of the male lion. Damin himself extendad thia theory so inaluae also the meapons suoh as spurs, antlers, horns, and teoth, by whioh the males fight for the possession of the Lomeic.

Again this aplies mutation in a direction desired by the individual and is open to objeotion for that reason. Te aited the evidenoe berore whioh shoved that antations in Drosophila were in no way adaptive.

Wheze are other objections ageingt this the ory. Heyer olearly ghowed that odor was the guiding faotor in mating in the rronethea noth. When the antemac of the males were ooverod with ghallag, the ales were provented fron finding the fenales. When sone femalos were out in two, the aboomen in one part and the wings, thorax, and head in the other part, the males came to the abdomen ond not to the head and wings. Fhen fanalos were pati in olozed ghäas jars, the maien did not gend that oven though they were in plein sight. Finsily Mayer out Off the win 0 oit sone of the fomales and glued the winge of malos to the stumps. Hales aated with male-appearing female s as irequently as with others. This experiment not only showed that sexual seleotion played little part in the aating procesp, but also that the semale, who, it is postulated nukes the
ohoia, plajea only a passive role in the vholo process. ${ }^{\text {i) }}$

This theory also asoribes an esthetio sense to the female. Whioh it is doubtiul that she possesses. Jikowiso it has been discoverec that airas brilliantly oolorsd males do not display thoir charms by any speoial courtship behavior, anô speoisl ooloration is therefore asaless. Minally it is also true that in tho aase of the salanander, where the sporin is not introduced dixectly into tho female by the male, there is no guaxantee thet the lemalo mates with the male who has oourted hor. Host evolutioniste tharefore adait that this argument has boon very much overstrobsed in years gone by.

Just the opposito of protective coloration is the phenomenon known as "warning coloration". Here animale do not attempt to blend in with their backgroma, but they are aotually so highiy oolored that thoy antnally attract attontion. Host of these oninals, socording to poulton who is the chief advoost of this theory, are unpalatable, dangerous, or in some way proteoted by apines, haire, ox herdnesc. It pays such an animal to advertise this sact. quok recognition of suoh an obnoxious species by a predatory aniagl saves its members many experimental or ignorent attoks. The ancostors of these brightly colored species must hevo originally been dull volored and heve reached the prasent condition step by atep throngh an acoumulation of bright mutations, waoh of which has been reoognized by tho predator. Suoh warning ooloxation is to be foma among bees, waspa, skunks, ooral fish, all of whioh are objoction-

1) Mayer, A. On the Hating Instintt in Hoths, Pgyohe vol. 9 (1900):p. $15 \approx 20$
able for some reason or another. The Gila monster, the only poisonous lizard,is also said to be warningly colored.

This theory is again open to the objection that it oannot be demonstated that mutations are in any way adaptive. But there are still other objections which we may offer. There are some brightly colored species whose color oannot in any way be considered as giving warning. Certain annelid worms which have beon said to be warningly colored live in tubes, and in that way they have no ohanoe to display their oolors. The walking stiok has an acrid taste, but it is so dull and stick-like that it is universally olassified among the protectively colored animals. The rendomyohidee, a fanily of beetles, are highly oolored, but they are seldom seen, sinee they live in fung1. Fumbliarmore, if the first matations were recognized by predacious animals, further mutations would heve no additional survival value. Indeed if these animals were recognized as undersirable in their original state, there would be no reason for their becoming colored at all.
likewise there is serious doubt as to whether these warning colorations aotaally serve their purpose. Turring once more to MoAtee's studies, we find some romarkable facts. The einoh bug, supposedly warningly colored, wes eaten by 29 spooios of birds, thres of whioh, in single individual birds, ate more than 100 einch bugs at a single meal. Dither the oinch bug is not disagreeabls or the birds do not learn. Seventy-seven blister beetles, also said to be paididity lolored, were
eaten by a singlo kingbird in one neal. We oould eito still other instanoss, but these will suifico to show that the theory simply zalia to pieoes when it is put to the test.

Beosuse oi this, other theoriess, suoh as that of imaunity ooloration, heve takon its place. This theory has as little basis in fact as doas the thoory of warning colorstion, and for tin t reason has zew supporters today.

Today oonspiouous oolor in animals is asoounted for by aost evolutioniste on the prinoi le of aimiory. The original proposal of miniory, that of Bates, postulated that an edible spocies minias an inodible ono. A dillianiby arose wen it was discovorod that diffarent apeoies of the same subfanily ofton resembled one enother. It is gensrally held that all fanilies of one suibeanily are eithor adible or inedibie. This meant that one distasteful spocios was mimioking another diatasteful spooios, and this would hardly itt into the gens ral idea, lueller ana to the resone by suggesting thet two alstasteful speoies night eoonomize by ofiering to predatory animals only one aign of digtastefulnese instead of two. Mredetors would have to learn Irom experience that animals having a brilitant color vafeic rigoo to eat. In this proosss a certain namber of individiala wolld bo destroyed. If this loas ould be divided betweon two specios, it would be an advantage.

The anoestors of the mimio were supposed to have beon aull
colored. Gradually one of the dull ancestors aquired a oertain amount of oolor. Whis color was iransaltted to later generations and in tine the anount of color inareased. Aocording to this theory, the resembling forms must oocupy the same area. In the osse of Batesain mimiory, whioh still has a host of supporters, there mast be a difference in liability to attaok, one being moro protected than the other by dts own qualities. The model nust be more numerous in individuals than is the mimic. The mimic must have a aistinetively different oolor or pattern from its near relatives. Finally the mindary aifects only the external charaoters.

This theory too is open to a number of objections. Hirst of all, as we have said in the cases of the preceding theories, there is no evidenae of mutation in response to an environmental need. horeover in many oases there is no real knowledge that orio of the species involved is protected by a disagreable or dangorous quality. In other cases it in diffiault to say iron which enenies the animal is to be protected. If an animal has more th in one set of enemies, it is doubtful whether mimiory would be of the same value with all of thom. We know that some aninals are prectioally color-blind: to these brilliant colors would mean nothing. Other animals see different portions of the spoctrum than those which we see. It aust be admittied that the whole theory is based upon human reactions ana observations.

In some oases there is doubt as tonwhether the resemblance
is supitolont to doceive. In many oeses living speoinens are different tron nuseun spocimons, and it is on museun specinons that the theory is built.

Poulton deacoribes the oapture of a clearwing moth, which 1 a supposed to be the aimic of a hornet, by a lizard whioh at the lirest trial kopt avay Proa tho "stinging" ond. Soon it discovared, homever, that the noth was harmlegs and the very next tine that a olearwing was oifered, itt rocognized its nature ana sto it without caution. If a single experience is all the is negessary to soe through the deception, the minioxy omnot bo very valuable.

Aside from birds, it is generally adnitted that lizaras and monkeys are the ohief enonies of buttorfiles. Experiments by Handers have ghown that lizarde ent the supposediy evil tasting butterfilios as readily as the palatable ones, and it would seem from the work of roulton that ordinary deceptions oif mimiery ara no matoh for the powers of parueption.

Aocording to this the ory the rasomblance must have cisen by smali stope under soleation. At the early steges of the procese, the differonoe bebroon the minia and the faded were very great: yet the resemblanoe, slight as it was, foolod the predatox. later prodatory animis are supposod to have been deoeived only by those individaals most like the model 4 otherwiso furthex resemblanos would have had no survival vatue and to have devoured all those lese similar to it. In other
words, the prodator's powers of aisorimination inyroved enormously as the Individuals autated fowsurd their nocel. Fiven Shull. reajizes that this is one of tho waskesees ot the the ory and saye: "It would be ono of the marvels of evolution is the inprovenent in diserinination requirad should have been timed to ooincids so oxapletely with the dovelopment of some mimien. l)

Thore are stili other objections. Mirst of all, mimicery involves warning ooloration. There is no proof that such a phenomenon exists. Moroover sometimes the minic is more ebundant than its model. Doossionally too the mimic and the so-called modo? do not ocoupy the saae region. It hes been aisocovered that in one aase one of the spoaies of the paix is in South Aneriaa and the other in Afries.

To sura ap then, all four theories θ the theory of proteotive xesemblanos, the theory of sexual seleotion, the theory of warning ooloration, and the thoory of mimiory - are open to many of the game objections. Thoy are all highay subjeotive. Thoy assuans that uninals see just as we do, while as a matter of Raot we know that thoy do not. Under uitrs-violet light, wing pattorns appar very anch difiorent from the man ner in whioh theg appear under netural light. Jor that reason to some animals some minios do not reseable theip models in any way. lloreover these theories also assuas that an aninal has t same faste roactions as we huans do, for it assumes that ingeots which heve a disagrocable taste acoording to human standarós also
have a daagreosble taste so fer as the predatore arc conoerned. We low that this is not true from tia examples of the lizards asted above whish devoures both palatabla and unpalatable ingeots without any aisporentiation.

On this whole subjeat Dobzhansky saye:"... the process of developnent of proteotive and warning charateriatios nas not been obeerved in a spoies oither in the laboratory or in nature. The concealing and minetio resembianoes that wo reoord in nature are the end products of the historio proogsses that have taken plas and it only remains for us to infor whether thejr origin through nstaral selection is or is not probable." 2)

Another factor in ovolution about which we hear a great deal is grographic isolation. It is beliovad that isolation o: groaps of indviduals from one another has playod an inportant patt in the origincoin speatos. Thus it is assumed that two groups of the same spooies ave isolated from one another by some water barrior. Dipserant mutations ariso in the two difierent groups and in the ourse of time these two groups would beoone so diferent that they would aonstitute two dificarent apeoios. Thexe are of oowso barriers other than water brriere: diatance itsela is a barrier.

It is genorally admitt ed however that nost species are not

1) Dobzhansky, p. sit. p. 263
completely isolated from rolated speoies. Though they do not ocoupy the same region, they are nevertheless not very far apart. This theory would require that related gropps be incapable of interbresding with fertility, for if the two groups interbreed, they aro no longer isolated. Barly proponents of this theory assumed that a gradual acouraulation of difierent matations would bring this about. on this point Shull says: "There is littie in the oxdinary paots of genetios to support the view that agoumalation of aifferenoes of the kinds by which speoies are recognized and diatinguiahed irom one another leads to sterility.... How these single stop oauses of intersterility could arise any better in separated groups than in ireely interbreeding popalations is not oleax". 1) Goldsohmiat says: "The origin of species is not to be oonoeived of as cosurring via geographia races or the members oi a rassenkrese (racial oirole)"。2) Bvan Dobzhansky says on this point:" Isolation is a coasorvative sotor that sawa down the evolutionary procoss.... Too oarly an isolation of the favorable gene oombinations formed in the process of race difiorontation would mean too extreme a specialization of the organism to the environmental conditions that may be only temporary. The end result may be extinetion..........Isolation is neoessary, but it must not oome to early." 3)

Moreover it must always be kept in mind that mutations

1) Shull, Op. Oit. p. 230
2) Goldsohmidt, Material Fasis, p. 168
3) Dobzhansky, Op. Oit. p. 229
have never produced a new species. In all of the work done with Drosophila, no form that vould conform to our idea of speoies has arisen. It is general ly admitted therefore that this idea of geographioal isolation has been overworked by evolutionists.

Another tremendous problem so far as evolution isnconcerned is the problem of early evolution after the beginning of life. No reputable biologist today attompts to acoount for the origin of life. Evolutionists prefer to leave that problem to the philosopher and to start out with life al ready existing. It is assumed, how avery that the iirst life was very minute. Whether it was cellular or not is diflicult to say. However many evolutionists point to the filterable viruses whioh we know today as akin to the earliest forms of life. Very little is known of these forms at present. But here a diffioultympresents itself. All known filterable viruses today live within other organisms, and it is impossible that the early forms of life should have done that.

Most evolutionists postulate the beginning of life in single form, yes, in a single individual. But here too there is a diffulty. If there was only one form and it reprodueed without any limits, it would soon outstip its food supply. One biologist has said:"If the carliest plants had been able to reproduce themselves unoheoked, they would soon have exhausted all the food substances and would themselves have vanished. So it is probably that
togethor with the earlis st plants there appeared other organiems to feed upon thern, and that these in turn were kept in oheok by still other forms of life......Animal life could not have porsisted on the earth had not the animals at their first appearanoe assuned a number of difierent and divorse forms". ${ }^{1)}$ Is there any reas on then why we should not assume that God oreated all of the spesies at one tine?

There is another diffaoulty in explaining how single colled organisms beoume organisns made up of aggregatei or colonies of oells and then ohanged into the metazoa, organisms made up of a largo number of highly differentiated cells. Explanations for this ohange are purely speculative.

Finally there is no explanation for the ohange from the invertebrates to the vertebrates. The body plan of the vertebrates is exaotly opposite that of the invertebbates (Figure IX). Invertebrates have a ventral central nervous systea and a dorsal heart: vertebretes have a dorsal contral nervous system and a ventral heart. This ohange oan be accounted for only by some fantastic theory, Among those propounded has been the one acoording to whion an invertebrate olung for milifons of years to a rook faoing upstream in a rapidiy moving river. In the oourse of time the foroe of the ourrent turned him inside out and he beoame a vertebrate. Nesdiess to say such an explanation is impossible

[^13]gendtioally. it has been demonstrated time after time that ohanges in response to the environment are not inherited. For this reason aost ovolutionista today postulate a separate boginning for vertobrates and invertebrates. Sone sofentists assume that vertebrate dieferentiation takes plaos at an early embryonic stage. Thet insiat that the difierence between the two must begin alrealyinn the gastrula stage of the ombryo. inis is of course true beoause at gastrulation the body plan is laid down. Howover they eo not explain how this difierence originated.

This whole gystee of building up now speaies by gedual ohange whether irom tnvortebrate to vertebrate or from protozoe to metazoa is rejeated by Goldsohmidt in the very first pages of his book. Of this whols syster to whioh he gives the name microevolution, he says: "This tera has been used by Dobzhangiky for ovolntionary processes observable

Invertebrate

Vertebrate

Figure IX: Comparison of the vertebrate and invertebrate body plan.
within the span of a human iffetime as opposed to maro-
evolution on a geologiasl soale. It vill be one of the major contentions of this booksto show that the faots of mioroevolution do not suifioe for an understanding of macroevolution. The latter term will be used here for the evolution of the good speoies and all higher taxononio astegorles"。

From a genotic viowpoint and from the viewpoint of evolution there are a number of oharacters whioh oannot bo acoounted for, oharaotors whioh have not and cannot have arisen in the oourse of evolution. Some of these we disouss now in this paper.

One of the things that has pazzled anatomists for a number oi jears was the reason why the male gonads in mamals should ba outside the body oavity. In all other animals, both vertobrates and invertobrates, the gonads of both the male and the femule are containod in the coelonic oavity. Recentily however through tests conduoted on sheep it has beon discovered thet mammalian sperm become infertile when heated to body temperature.

Now how oan this be accounted for on the basis of evolution? It must be assumed that the mamals evolved from lower vertebrates in whioh the gonads are in the ooelomic oavity. It cannot be assumed that some vertsbrates were evolved in whi oh the sperm beoame infertile at body temperature: these aninals could not have obntinued to propagate themselves. on the other hand it aan soarcely be as-
aumed that the first step in their ovolution placed their gonads outside the body oavity: such on arrangenent would have had a negative survival valne, beosuse outside the body cavity, the gonada aro more lisble to be injured. Forithat reason those onimais in whioh this arrangement had developed woule have died out because they would not have been so we 11 equipped to survive as those in whioh the gonads were still within the body ouvity.

Another very interesting thing whioh aarnot be oxplained on an evolutionary prinoiple is the developnent of blood groups in humans, then a foreign protein is injected into the blood strean of an animel, the oells of that animal produce a charaoteristio substance which raacts with the foreign protein and whioh is knom as an anti-body. The foreign proten which oauses the produation of the antibody is known as an antigen. One of the reactione whioh may take place when an antigen reacts with an anti-body ts an agglutination of the oells. In the human blood stream there nay be found two normal untigens and two noreal antibolies. The antigens are to be found in the hamen red cells and the antibodies in the blood sorum. For convenience the two antigens are named A and B. Landstelner and others lound that a person might have one of these antigens in his oolls or he might have the other, or he might have both, or he might have neither. Whatever antigen a person has in his colis, the corresponding antibody is laoking in his serum. that is
obvious, beasase the presence of both antigen and antibody would lead to agglutination and death. When an antigon is not present in the oelle, the corresponding anti-body is present. This fact is the basis for the present system of blood typing.

Now how oan such a thing be explainod on the basis oi evolution? It is obvious that acooraing to evolutionary theory at one tiac there must have been only one group. Let us assume that this group had either both antigens or both antibodies. The first ohange would have int roduced one of the oorresponding antigens or antibodies into the blood stream and death would have result ed. Or suppobe that originally the blood stream contained neither antigen and noither antibody. The first step would have been the introduction of one of the antibodies or one of the antigens. But eventually the corresponding antigen or antibody would have been introduced and death would have resulted to the individual. From a genetio standpoint it is almost inoonoeivable that both the blood oells and the bleod serwa should have ohanged at the same time to make the presont arrangenent possible. The odds against such a ohance happening are almost ogerwhelming.

Modern investigations in physiology have disolosed oomplozities whioh make evolution impossible. lifuoh of physiology tuday is conoerned with hydrogen ion concontration, known as pH . It has been found that for all practioal purposes
hydrogen ion conoentration of any liquid varies from one gram of hydregen ions per liter to .00000000000001 grans per liter. The former is a strongly aoid solution: the latter a strongIy basic solution. All gradations between these two figures are to be found. A solution oontaining . 0000001 grams of hydrogen ions per liter is neutral. In measuring hydrogen ion oonoentration, it has not been found oonvenient to deal with deaimals beoause they are too complioated. Instead it is measured in terms of 10^{-n}. This " n " is then known as the pH of the solution. Thus a pH of 6.4 means a hydrogen ion oonoentration of $10^{-6.4}$. A pH of 7 is neutral.

In studying enzymatio aotion it has been found that pH plays a very important role. Esoh of the digestive enzymes has a partioular pil at whioh it works best. This is known as its optimum. Indeed it is only within a certain range of pH that an enzymo shows its charaoteristio oatalysis. The raarvelous thing is that the pH of the various parts of the digestive system is not only within this range of aativity, but it is actaally equal to the optimum for that partioular enzyme. Thus the popsin of the gastric juioe is active at a pH of between 1 and 3 with its optimum between 1.2 and 1.8 . This means that to work most efficiently it must have an acid environment. This is exaotly what it fends in the stomach: indeed the pH of the stomach is general ly between 1.2 and 1.8. Similarly trypsis is active between pH 6.8 and pH 9.6 while its optimum is at about 8.2. This is exactly what it finds
in the panoreatio juice.
There are some oases in which the environment of an enzyme, while within the range of aotivity, is not always at the exact optimura pH. At first this seems sonewhat di sonoerting, but when we study these instances, we find that they are ooncerned with exactly those processes whioh need to be slowed down or speeded up at times. When it is necessary to speed these processes up, the pH approaches the optimum. on the other hadn when it is neoessary to slow these processes down, the pli changes, moying toward those limits in whioh the enzyme is active.

It is almost impossible that this should have come about through evolution. Evolution assumes ohange from the simple to the oomplex. That would mean that at one tine the pH of the whole digestive tract would have had to be the same. But this would have made it impossible for some of the enzymes to act. Pepsin aannot act in an alkaline onvironment, while pepsin oannot aotiln a strongly aoid environment. This then is oertainly one of the processes which could not have evolved.

Another interesting thing in oonnection with enzymatio a.tion is the fact that an onzyne shows its maximum effect at between 38° and 40° whioh is exaatiy body heats Oatalysis is a ohemioal prooess and is therefore subject to ohem-
ioul laws. We would then expeot that the higher the temperature, the more rapidiy the enzyme would act. That, it has beon discovered, is true. But an onzyme is also a highly unstable protein, extremely senstive to temperature. A high temperature will oause an enzyme to disintegrate and thus to lose its effeotiveness. For that reason up to a oertain point inoreased temperature speeds up the ohemioal process, but above this temperature this effect is offest by the destruation of the enzyme through disinteggation. In every oase animal enzymes show their optimum effect at body temperature.

I shall mention just one more physiologioal fat whioh to my mind cannot be acoounted for on the besis of evolution. That is the phonomenon of buffer aotion. We mentioned above that the body maintains a pH whioh is equal to that of the optinum of the partioular enzyme whioh is to work there. To maintain this pH oonstantly a meohanism is necessary, for the introduction of a solution differing in pH would ohange the pH of the environment. This is done by means of buffers. These are substances whioh give off (H-) ions or (OH) ions according to the aoidity or alkalinity of the solution. Thus if an acid is introdueed, the buffer gives off (OH) ions to counteract this. If a base is introduced, the buffer gives off (H-) ions. In this way the body is able to maintain a constant pH . The remarkable thing is
that the two buifers to be found in the blood atream, $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ and $\mathrm{H}_{2} \mathrm{CO}_{3}$, require larger anounta of alkali to effect a ohange in the ($\mathrm{H} \cdot$) of thoir solutions than any other of the weak aoide save $H_{2} S$. In other words the bufier substances of the blood are among the vory most efientive that would be pound. Could this be due to chance alone?

To show how importantthe environment is and how delioate a bsiance is neuessary, lot me quote one instance oited by Dobzhansky. Ho says: "Bnviroment of the spermatozoa in the reproduotive organs of the seanio of another species may be unsuitable for them and may oause their death or at least a loss of fertilizing ability. Spermatozos of higher animale are knom to be highly sonsitive to any variation in the onvironaent, partsoulariy to those in osmotio pressure. The sparmatozoa of a daok, a geose, and a cook has been injected in the genital duots, after 22 to 25 hours the birds wore disseotsd and lerge numbors of sparmatozoa vora found in the upper portions of the oviduats. But while those of the duok were alive and motile, a majority of the spermatozoa oi the goose and cook were already dead (Sorebroveky 1935 hybridization of animals Biomedgiz, Hosoow-Leningrad)". 1)

It might be well at this point to comment on Goldsohmidt's latest theory, a theory whioh is based on changes in the ohromosongs. Goldsoholit rejeats absolutely the prasent

1) Dobzhanaky, p. 01t. p. 246
neo-Darwinian thoory: in fact he believes that it hampers progress in evolutionary thought. Goldsohmidt believes briefly that evolution has oome about by translocations and inversions whioh result in the sudden establishment of now species. He carefully distinguishes between microovolution, or intraspeoifio variation, and macroevolution, interspecific variation. As is rather obvious, we are concerned only vith his macroevolution, since we readily admit that miaroevolution in his sense is a oommonly observed phenomenon.

Perhaps a quotation from his most reooht book, The Material Basis of ivolution, best sums up his approach. There he says: "Species and the higher aategories originiate in single macroevolutionary steps as oompletely new genetic systems. The genetioal process which is involved oonsists of a repatterning of the ohromosomes which resglts in a nev genetio system. The theory of the genes and of the aocumulation of mioromatants by selection has been ruled out of this pioture. This now genetic system, whioh may evolve by suocessive steps of repatterning until a threshold for ohanged action is reached, produces a ohange in development whioh is termed a systematio mutation. Thus seleation is at onee provided with the material needed for quick macoevolution. The facts of development, especially those furnished by experimental embryology, Bhow that the potentialities, the mechanios of development, permit huge changes to take place in a single step. The facts of physio-
logioal genetios and their explanation in teras of coordinated rates of prooesses of differentiation furnish the insight into the possibilities of maoroevolution by single steps. A considerable role is assigned to such genetio changes as affect early embryonio processes and automatioally ontail major deviations in the ontire organization. The general pioture of evolution resulting from suoh deliberations is in harmony with the faots of taxonomy, morphology, embryology, paleontology, and the new dovelopments of genetios. The neo-Darwinian theory of the genetioists is no longer tenable". 1)

One of the oontributions of Goldsohmidt's theory is that it simplifies the theory of cvolution oonsiderably. This he mentions as a point in its favor. And yet in a way it is too simple. We know that life phenomena are infinitely more oomplicated than those of the inorganic morld: we know that a synthesis of the organio oompounds making up Ifving materiala will not result in a living organism. Goldsohmiat realizes that his theory is subjeot to this oritioism, and answers by saying that life must be based on simple, prooesses:otherwise no organisms could exist. We would answer that organisms exist insspite of the complexity of their organisation beoause of the hand of God behind them, but Goldsohmidt refuses to admit suoh vitalism.

Aotually muoh of the theory is based on deduative reason-

[^14]ing. There is no experimental proof for the thoory: no new speaies has been obsorved to develop in the manner postulated by Goldschmidt. This he admits, for he says: "UnfortunateIf no experimental attack on this problem is at present apparent". 1) As a result there are nunerous statements in his book such as: "Unbiasod synthesis of existing faots seems to favor our solution"2); "We may oonsider these facts as, at present, barely hinting that maoroevolutionary steps bssed upon a change in relative growth might bs hased genetioally upon systematio mutation" 3); "We oan iagine that here a model for directed genetioal ohange has been found, combined with the possibility of large steps, the systematio mutations. We shall not indulge in further premature speanlations, but I think that we are justified in having at least intimatod the interesting possibliftes of further advanoe in this äirection"4) On the evolution of man, he follows stookard and says: An ovolution from this hominid (Sinanthropus) to Homo sapiens may therefore be conceived of as having been perfooted in a single genetio sten, an event whioh is possible on the basis of endoorine oontrol of growth and differontiation". 5) Yet he admits innthe next gentence that "this is oertainly purely speoulative".

Now what is the nature and basis for foldsohmidt'g argu-

1) Goldschmidt, Matorial Basis, p. 334
2) Ibid. p. 334
3) Ibid. p. 321
4) Ibid. p. 323
5) Ibid. p. 283
mentation? $\bar{H} e$ has a number of avenues of approsoh to the problem, but I think thte one example will suffice to bhow the general line of argumentation whioh he employs. He takes the interesting example of the intersexes. Intersexes result from some disturbance in the belance of the chromosomes. In these, depending on the exact genetio balance, different degrees of intersexuality affecting both primary and secondary soxual oharaoters may be achieved. For instanoe, in Iymantria dispar, the male normally has a single unous whioh develops from paired primordia. However in one grade of intersex these paired primordia fail to fuse resulting in paired uno1. It has been found that this same result oan be achieved in males with a normal genetic balance by treating them with heat, X-ray, ultraviolet ray, etc. at a oertain oritioal period in their embrjologioal development. Moreover it has been found that there are oertain relatives of the lymantriids whioh normally have paired unoi. These facts, Goldsohmidt reasons, give us a possible explanation of the way evolutionmmen have takon place. Some iaotor whioh temporarily disturbed the genotio balanoe may have developed in Lymantria. This factor, by affecting the development at the oritioal period, oassed the double unoi. Later this disturbanoe beoame atidilized and we have a new speoies. ${ }^{\text {1) }}$

While we are willing to admit that something like this
7) Goldsohmidt, Matorial Basis, p. 302ff
might possibly oocur, though the resulting form would not be a new Rkind" in the sense of Genesis 1 , it is hard to ooneive of its ratizer frequent ocourrenoe as Goldsohmidt's theory would require. The theory, as we have noted before, lacks experimentai proof. Then too most disturbances of this nature aifect the viability of the individual. In faot quoh disturbances may be lethal. The intersezes referred to above are always sterile. Goldsohnidt hinself realizes that there is a difficulty here, for he says: "A ropatterning of ohromosomes - our systematio mutation - neoessarily leads af first to non-viabile groups (homozygous transloations, defioienotes, eto.). The new pattern thereiore arnot survive in the population except in the absence of selection pressure against the heterozygote and under proper conditions of interbresding. But this applies only to some of the inftal steps corresponding to the simple pattern changes by so-oalled ohronosome mutation. The faot that, for example, in Drosophila miranda a. ohromosomal pattern perfectly difierent from that in pseuadoobsoura is viablo in homozygous oondition proves that at some point in the repatterning prooess the oonstitution of a new system, viable in homozygous stute, must have been agobmplished (of oourse, provided that one pattern is evolved from another one, which oan hardly be doubted). It is not known at whioh point this deaisive oondition is 1)
reached". Note that he assumes evolution as a fact and that he assumes sonething has happened - the change from

[^15]non-viable to viable - about whioh he has noteven the slightest shred of evidonoe.

Anothor oritioism that might be raised against the theory is that frequently inversions and translooations hive no effect on the phenotype or outward appearanoe of the species. Goldsohmidt himseli admits this, for he says:"...the internal ohromosomal pattern may slowly ohange in a series of steps without any visible affeot on the phenotype and without any acoumulation of so-called gene mutations, small or large". I) If Goldsohmidt's theory is true, we would expect every inversion and translooation to have its effeot. If not everyone has an effect, what determines whioh one will have an efiect and which ones will not?

Still another oritioism, though net neoessarily suoh a weighty one, is that Goldsohmidt tries to oorrelate his theory with reoapitulation, the theory of Haeokel, a theory whioh has been all but abandoned today.

In summary then, we may say of Goldsohmidt's theory that we are willingtto admit that new taxonomio speoies may poosidiby evolve in the manner postulated by Goldsohmidt, But these would not be difierent kinds of animals in the sense that the word is used in Genesis. Moreover his theory would hardly account for the evolution and origin of speoies as that plirase is used in soientifio oiroles today.

1) Goldsohmidt, Material Basis, p. 191

Aotually however the problem of evolution is too big today either to prove or disprove. There is no conolusive evidence in favor of it today, nor, on the other hand, aan we say that there is conolusive soientisio evidenoe against it. There are many things in the biologioel worid whioh evolution cannot acoount for. On the other hand there are many things today which in our present stato of knowledge appear to us to point to ovolution. Perhaps someday some soientific evidence will be disoovered whioh घill disprove the theory beyond a doubt. But that day is not here yet.

In this paper I have oonsidered some of the soientifio facts whioh I believe militate against the theory of evolution. all of these, however, are only supporting evidenaes in the Christian's judgment of the theory. He refuses to acoept it, not because there is soientific evidence age inst it, but primarily beaause the Bible rejects it. When God has spoken, the matter is olosed. And even if there are many things whioh he cannot understand and explain, still he ecoepts God's acoount of the origin of thins, confident that God and the Biblical account will ultimately be vindioated, if not by soientific evidence yet to be disoovered, at least in the light of etemity.

In conclusion, let me show that soientists themselves realize that the problem is far from solved in a satisfaotory mannor by quoting once more from two of the wozld's leading
genotioists, Goldsohmidt and Dobzhansky, Goldsohmidt says: "The statement of the problem already indioates that I oannot agree with the viewpoint of the textbooks that the probles of evolution has been solvad as far as the genetio basis is ooncerned. This viewpoint considers it as granted that the proeess of mutation of the units of heredity, the genes, is the starting point for evolution, snd that the aocumulation of gene mutations, the isolation and selection of the new variante whioh afterwards oontinue to repeat the same prooess over again, acount ior all evolutionary diversifioations. This viewpdiftt.......must take it for granted that somehow new genes are formed, as it is hardly to be assumed that man and amosba may be conneoted by mutations of the same genes, though the ohromosomes of some Protozoa look uncomfortably like those of the higher animals. It must further be taken for granted that all possible differences, induding the most oomplicatied adaptations, have been built up by the acoumulation of suoh mutations. We shall try to show that this viewpoint does not sufifice to explain the faots. At this point in our disoussion I may challenge the adherents of the strictly Darwinian view, whioh we are disoussing here, to try to explain the evolution of the following features by acoumilation and selection of small mutants: hair in mamrals, feathers in birds, segmentation of arthropods and vertebrates, the transformationnof the gill arohes

In phylogeny inoluding the aortio arohes, musoles, nerves, oto: further teeth, shells of mollusks, eotoskeletens, compound eyes, blood oiroulation, altemation of generations, statooysts, ambulacral system of cohinodorms, pedioellaria of the same, onldoeysts, poison apparatus of snakes, whalebone, and finally, primary ohemioal differenoes like hemeglobin vs hemooysinin, eto". 1)

And Dobzhansky says: "Whe origin of hereditary variations isf however, only a part of the mechanism of evolution. If we possessed a complete knowlodge of the physiologian oauses producing gene mutations and ohromosomal ohanges, as well as a knowledge oil the rates with which these onanges arise, there would still remain much to be learned about evolution. These variations may be oompared with building materials, but the presence of an unlimited supply of materials does not in itself give assurance that a building is going to be construoted. The impact of matations tend to incraase variability. Nutations and ohromosomal ohanges are oonstantly zixising at a finite rate, presumably in all organisna. But in nature we do not find a single greatly variable population of living beings whioh beoomes more and more variable as time goes on: instelad the organio world is gegregated into more then a millioh qpareate species, each of which possesses its own limited supply of variability which it does not share with the others. A ohange of the species

[^16]from one state to the other or a differentiation of a single variable population into separate ones, the origin 01 the species in the striot sense of the vord, constituters a problem which is logically distinct from that of the origin of heroditury variation." l)

1) Dobzhansly, Op, Cit. p. 119

BIBLIOGRAIHY

1. Aota Biothoortioa, III, part 3 (1930)
2. An Amerioan Cominentary on the 0ld Testament, Amerioan Baptist Publication Society, Boston, 0. 1908. The Book of Genesis
3. Babcook, HoB., and J.I. Collins Does Natural Ionizing Radiation Controi Hate of Hutation? Proce日dinge of the Mational Aogdemy of Solenoe, vol. 15 (1929)
4. Baier, Compendium Theologiae positiva, ed. Walther.
5. Calov, Abr. Bihlia qestamenti Voteria et Novi Illustrata
6. Catizone, Olga The Linkage Relations of Fellow, an Antennal Factor in Habrobraoon Juglandis, University op Pi ttaburgh, 1938
7. Olarke, Adan The Holy Bible with a Comnentary, New York, Baton and Mains, vol. 1
8. Delitzsoh Franz A New Commentury on Genesis, Edinburg, T.and T. Clark Co., 1899
9. Dobzhansky, Theodosius Genetios and the Origin of the Species, New York, Co umbia U. Press, 1937
10. Driver, S. H. The Book of Genesis, Hethuen ahd Co., Liondon, 1920. ilth ed.
11. Driver, Sanuel Rolles, at al. The International Oridieal Commentary, New York, Scribners, 1910 Genosiss.
12. Gesenius, Villiam Thesaurus Philijogious Oritious hinguae Hebraeae ot Chaldaeae Voteris Testamenti, Leipzig, I8כ9
13. Gesenius, Willian A Hebrew and English Lexicon of the 01d Testament, Pranois Brown et al. eds., Boston, Hoaghton, 1907
14. Gesenius, Filliam A Hobrey ond English Lexicon of the 0ld Testarnent inoluding the Biblical Cialdee, Edward Robinson, ed., Boston, Ioughton, 1854
15. Goldsohniat, Richard The Material Basis of Evolution, Now Haven, Yale Press, 1940
16. Goldschmidt, Richard Physiologioal Genetias, New York, MoGrawHill, 1938
17. Gunkel, Hermann Handkormentar zum Alten Festament: Gonesis Goottingen, Vandenhoook and Ruppreoht, 1902
18. Hanson, 1.B., and Heys, Florence A Possible Relation between Natural Radiation and GenelMatations:Soienoe, 11, (1930)
19. Jamieson, Fausset, anà Brom, Critioal Gommentary, vol. I
20. Keil, Carl Priedrioh Biblisaher Comantar Uber die Bucher Moses, Leipzig, Dbrffling and Franke, 1878
21. Klotz, John W. Iinkage Testg with Vä̈nless, a Ming Faotor in Habrobraoon Juglandis, University of Pittsburgh, 1940
22. Landaner, W., and Dunn, L.C. Journel of Gonetios, 23 (1930)
23. Lindstrom, E. 信. A FertilenTetraploid Tomato, Journal of Heredity, 23 (1932)
24. Luther, Hattin Sanmtliohe Sohrifion, St. Louis, Concordia,vol. I
25. HoAtee, IV. I. Effectiveness in Nature of the so-dalled Protective Adaptations in the Animal Kingdom. Chieily as Illustrated by the Rood Hahits of the Nearotic Birds, Smithsonian Institute Miscollaneous Colleot
26. MoAtee, W. L. Warning Colors and Mimiory, Quartorly Reviey of Biology, 8 (1938)
27. Hayar, A.G. On the Hating Instinot in Moths, Psyohe, 9 (1900)
28. INuller, H.J. Radiation and Gonetios, Amerioan Naturalist, 64
29. Oaiander, John Adan, Collegium Theologicum Systematiaum
30. Peake, Arthur A Commentary on the Bible Nelson, New York, 1919
31. Prooksoh, Otto Die Genesis, Deiohertsohe, Leipzig, 1913
32. Ransay, F. F. An Interpretation of Genesis, Neale, New York, 1911
33. Shull, A. Pranklin Bvolution, MoGraw Hill, New York, 1936
34. Sinnott, Edmund, and Dunn, L.C. Prinoiples of Genetios, NoGraw Hill, Now Y ork, 1939
35. Snyder, Laurence The Principles of Heredity, Heath, Boston, 1935
36. Sohmiot , Bobsstian Gonesis, 1697
37. Spanee, Ganon, di. mo gajuit domaentary, Fank, he: York,
vol. 1

Index

Baiex. 3
Blood groups. 839
Bridges. 13
Buripors. 88
Calcy 3
Ohromosomes. 35
Chromosomes, aborretions of. 41. 5319
Chromosomes, sox 14
Gytoplasa, inheritance throagh. 37
Dorainanco, origin of 59
Environnent. 64
Enzymes. 862
Gateopeis. 45
Gence, Recombination of 40. 503
Geno, heory of. 18
Genesis. $1 f 9$
Genetios. 13If
Geographio Isolation. 78きf
Goldsohnidt 171.39:~
Gonads 20
Imeunity Coioration 74
Invertebtates. 81
Lamarokisin. 89
Lethals. 25
Liffe, beginning of. 80
Luther. $3 \pm$
Mendel. 191
........................ lif
Mimiary. $74 f f$
horgan 13
Mutations. 23£f.48.56ff
liutation, direction of. 60
Mutatione, Parallel 63
Mutations, reverse. 62
Noo-Darwintsm. 39
Nuoleic aoid 18
Orthogenesis 68
Parthenogenesis. 51
pH $85 £$
Protective resomblance 881
Radiation. 5619
Sexual Seleation 70 ± 9
Soptuagint 2
Specios. 9ft: 6 ff
Species, new. 43ff
Tomato 46
Vertebrates. 81
Valgate. 2
Werning Coloration. $72 f$

[^0]: 1) Luther, Martin SAmmtiohe Sohriften, vol. I, p. 44
 2) Sohmidt, Sebastian Genesis, p. 10
[^1]: 1) An Ameriaan Commentary on the 01d Testament: Genesis, p. 47
 2) Clarke, Adam The Holy Bible with a Commentary, vol. I. p. 36
[^2]: 1) Jamioson, ot al. Oritiogi Gommentaxy, vol. I, p. 6
 2) Drivar, S.R. The Book of Gonesis, pe 9
 3) Delitzsoh. Frunz A Now Cominentary on Gonesis, p. 89
 4) Gunkol. Herman Handkonimentar zum Alton Mostament, Genesis, D. 95
 5) Proal soh , Otto Dio Gonesis p. 429
[^3]: 1) Peake, Arthuz S. A Comentary on the Bible, p. 137
 2) Drivor, Samuel et al. ed. The Intarnationai Critiaal Commentary. p. 24
[^4]: 1) Dobzhangity, Th. Genetios and the Optgin of the Spaoies, p. 310
[^5]: I) Goldschmidt, RLonard Physiologio.l Genetios, p. 280

[^6]: 1) Sinnott and Dann, Op. Qit., p. 323
[^7]: 1) uidintzing, A. Outlines to a genetio monograph of the genus Galooosis and Cytogenetio investigations on synthetio 2) $\frac{\text { Galeopsis }}{\text { Dobzhansky } 0 \text { Ophit }}$ dereditas:13:185-341 and 16:105-164
 2) Dobzhansky, Op. Uit. $\frac{\mathrm{p} \cdot 209}{}$
[^8]: 1) Goldsohmidt, Matorial Bashs, p. 237.240
[^9]: 1) Shull, Op. Cit. p. 93
 2) Sinnott and Dunn, Op. Cit. p. 335f
[^10]: 1) Snydar, I. Tho Prinaiples of Heredity, p. 175
[^11]: 1) Shull, Op. Cit. p. $106 f$
 2) Dobzhansky, Op. Cit. p. 31
[^12]: 1) MoAtee, W. Karning Colors and Mimiory, Quarterly Review of Biology, vol. 8 (2) 1933, p. 209-213 and Hffeotiveness in Nature of so-oalled proteotive daptations, Simithsonian Instituto Misoellaneous collection, vol. 85 (7) 1932
 2) Shull, Op. Cit. p. 168
[^13]: 1) Aota Biothooratioa, III, pt. 3, 1933, p, 1851
[^14]: 1) Goldschmidt, Material Basis, p. $396 f f$
[^15]: 1) Golōsohmiàt, Material Basis, p. $206 \pm$
[^16]: 1) Goldsohmidt, Material Basis, p. 6
